Loading...
Search for: electron-microscopy
0.026 seconds
Total 1407 records

    Capturing Co2 of the Atmosphere by Molten Carbonates and Transforming to Carbon Nanofiber

    , M.Sc. Thesis Sharif University of Technology Zarei, Mohammad Mahdi (Author) ; Moosavi, Ali (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    Capturing the atmospheric CO2 and turning it into value added products is a topic that has been extensively studied in recent years. One of the methods through which CO2 is valorized is via converting it into carbon nanofiber, CNFs. CNFs can be an important material in future human activities due to its valuable properties such as wide range of electrical conductivity, their superior flexibility and strength, But it is currently obstructed in use due to the high cost of manufacturing and the complexity of the synthesis. Furthermore, in today's world, human life is heavily influenced by greenhouse gases, and avoiding emitting gases like CO2, is almost infeasible. This thesis provides an... 

    کلیدواژه های تکراریCurcumin loading potentiates the neuroprotective efficacy of Fe3O4 magnetic nanoparticles in cerebellum cells of schizophrenic rats

    , Article Biomedicine and Pharmacotherapy ; Volume 108 , 2018 , Pages 1244-1252 ; 07533322 (ISSN) Naserzadeh, P ; Ashrafi Hafez, A ; Abdorahim, M ; Abdollahifar, M. A ; Shabani, R ; Peirovi, H ; Simchi, A ; Ashtari, K ; Sharif University of Technology
    Abstract
    Background: The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. Methods: We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation,... 

    Pressing and Sintering of Ce-Tzp-Al¬2o3 Nanocomposite with a High Percent of Alumina And Investigation of Sinter Condition on Morphology

    , M.Sc. Thesis Sharif University of Technology Ameri Shahrabi, Hadi (Author) ; Yoozbashizadeh, Hossein (Supervisor)
    Abstract
    In this project alumina-zirconia-ceria nanocomposite with 80% mol alumina (0.2Ce0.1Zr0.9O2-0.8Al2O3) was produced by solution combustion synthesis method. In the mentioned method, optimal fuel with composition of 75% urea, 25% ammonium acetate, and stoichiometric amount of glycine (0.75U-0.25AA-1G) was used. Moreover, ammonium nitrate as aid combustion was added to optimal fuel. In order to calcinations, nanopowder obtained from combustion synthesis was heated to 500°C for 1 hour and kept at this temperature for 2 hours. To complete heat treatment, the nanopowder was heated to 1150°C for 2 hours and 10 min and kept at this temperature for 2 hours. Then the specimens were pressed at pressure... 

    The Study and Comparison of Serrated Flow in IN600, IN625, and MP35N

    , M.Sc. Thesis Sharif University of Technology Nima Nikpoor Badr (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    A large number of metals and alloys show an irregular plastic behavior called serrated flow when being deformed in a certain temperature and strain rate range. The occurrence of this phenomenon affects the mechanical properties of the material, such as work hardening rate and ductility; consequently, it exerts limitations on the service conditions in which the alloy can be used.
    IN600, IN625 and MP35N are wrought Ni based and Ni-Co based alloys which are thermo-mechanically processed. When these alloys are deformed in temperatures between 300-700 ˚C, serrated plastic flow occurs. In order to investigate the mechanisms responsible for irregularities, hot compression tests were conducted... 

    A Microstructural Investigation on the Influence of Pore Fluid Osmotic Potential on Volume Changes and Soil Water Retention Curve, Low Plasticity Clay

    , M.Sc. Thesis Sharif University of Technology Heydari, Ali (Author) ; Sadeghi, Hamed (Supervisor)
    Abstract
    Understanding many issues related to environmental geotechnics and soil sciences such as: instability and collapse of soil slopes, sinkholes, leakage from landfills and isolation of nuclear landfills, and optimization Agricultural processing depends on our knowledge of the behavior of unsaturated soils and their volume changes. To better understand the behavior of unsaturated soils, it is important to study the soil-water retention curve (SWRC) and the factors affecting it. These include factors such as porosity, grain size distribution, soil minerals, pore size distribution, and pore water chemistry, which affect soil-water retention curves and volume changes. Since the simultaneous effect... 

    Design and Construct of Nd:YAG Laser and Using it in the Laser Ablation Process of Silver, Titanium and Zinc Element

    , M.Sc. Thesis Sharif University of Technology Gohari kamel, Nasser (Author) ; Sadighi Bonabi, Rasoul (Supervisor)
    Abstract
    The purpose of this project is to investigate the production of nano-micro metallic particles—of different elements—with different characteristics in size and optical property by employing a pulsed laser ablation processes in liquid medium. In this study, the means by which we build the laser, the experimental arrangement of the pulsed laser ablation process, the measurement of the absorption spectrum of generated nano-micro particles as well as the size of the particles are discussed.
    To satiate this aim, we have expressed the manner of constructing the Nd:YAG laser, the power supply circuits, along with its optics. This laser has some advantages such as high energy ~700mj, good... 

    Synthesis and Investigation of Antistatic Coating Properties Based on Tin Oxide by Sol-Gel Method

    , Ph.D. Dissertation Sharif University of Technology Zakerizadeh, Ali Mohammad (Author) ; Dolati, Abolghasem (Supervisor) ; Abdollah Afshar (Supervisor)
    Abstract
    In order to prevent electrostatic attraction on non-conductive surfaces, the most practical solution is to put antistatic coatings to reduce surface resistance. Nano tin oxide coatings are designed to produce surfaces with antistatic properties in the resistance range of 108-1012 Ω/cm. In this project, using a simple method, low temperature, without heat treatment and without the use of additive (dopant), tin oxide films with antistatic property were placed on the glass. Further, in order to obtain a coating with a suitable morphology and structure to increase the surface conductivity, the synthesis of tin oxide using the sol-gel method at ambient temperature was used. And to place the... 

    Fabrication of Al/SiCp Composite and Nano-Composite with Functionally Graded Structure Via Friction Stir Processing

    , M.Sc. Thesis Sharif University of Technology Ziaei, Mohammad Reza (Author) ; Kokabi, Amir Hossein (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    The feasibility to fabricate Al/SiCp nano-composite with functionally graded structure (FG-Al/SiCp) via friction stir processing was studied successfully in this paper. The distribution of well-dispersed nano-SiCp got a range of 6mm×3mm on the cross-section of nano-composite. A compositionally graded structure of nano-SiCp in thickness direction of the 5083Al plate was obtained via four passes of FSP. The percentage of nano-SiCp over 15%, 9% and 5% was found at the depth of 1.0mm, 2.0mm and 3.0mm, under processed surface of 5083Al rolled plate, respectively. Results show that the microhardness of FG-Al/SiCp nano-composite can reach steady 46%, 34% and 15% higher than the one of the base... 

    Solution Combustion Synthesis of Spinel-type (Cu,Co) 3O4 Nanopowder

    , M.Sc. Thesis Sharif University of Technology Ghorbanzadeh, Milad (Author) ; Yoozbashizadeh, Hossein (Supervisor)
    Abstract
    In this study, nano-powders of copper-cobalt spinel (CuCo2O4) were fabricated by solution combustion synthesis (SCS) of Cu and Co nitrates with urea, glycine,acid citric and alanine. The method involved exothermic decomposition of viscous liquid nitrates and the fuel. Products which were synthesized by using this fuels contained less impurity constituents. Duo to low purity, other factors which have influence on synthesis process investigated and observed that pH have key role on process. X-ray diffraction (XRD) patterns gave crystal structure and the existing phases. Particle size distribution and morphology changes were studied by dynamic light scattering (DLS) and field emission scanning... 

    The Effect of Different Parameters on the Production of High Alumina Cetzp Al2o3 Nano Composite Produced by Aqueous Combustion Synthesis

    , M.Sc. Thesis Sharif University of Technology Tashi Shamsabadi, Safar (Author) ; Yoozbashizadeh, Hossein (Supervisor) ; Askari, Masoud (Co-Advisor)
    Abstract
    Combustion synthesis is the best and most effective method for producing ceramic nano-composites which is also a simple and economic way of producing very fine powders with high purity. In this method, a series of combustion reactions named aqueous combustion analysis are used for producing single-phase and nano-composite products ,in which the heat produced in reactions are used for completing the phase . several chemical substances such as glycine ,urea ,ammonium acetate and others are used as combustion agents. In order to obtain optimized nano fuel, we produced alumina powder with multiple combustion percentages and composition of 25%moli ammonium acetate (AA) with 75%moli urea was... 

    Improvement of Mechanical Properties of a Mg-Zn alloy using the Micro Alloying Elements

    , M.Sc. Thesis Sharif University of Technology Cheraghi Heyvedi, Hamid (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    The development of new wrought magnesium alloys for automotive industry has increased in recent years due to their high potential as structuralmaterials for low density and high strength/weight ratio demands. However, the poor mechanical properties of the magnesium alloys have led tosearch a new kind of magnesium alloys for better strength and ductility.In this research,a new type of magnesium alloy based on Mg-Zn-Si-Ca system has been developed using the permanent gravity casting process. For comparison, an alloy without Siby the same method was also produced. The effects of trace Si addition on the microstructure and mechanical properties in magnesium alloy with composition of... 

    Study of CdS thin Film Deposition on Single Layer Grapheme using Close Space Sublimation and SILAR Methods

    , M.Sc. Thesis Sharif University of Technology Bagheripour, Amir Hossein (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    Cadmium sulfide (CdS) thin films were successfully fabricated in argon atmosphere on glass slides and Single Layer Graphene(SLG)/Cu foil stack by close space sublimation technique in three different deposition temperatures. Successive Ionic Layer Adsorption and Reaction (SILAR) technique is used as a complementary technique for better and denser layers. Analysis techniques such as Grazing Incident X-ray Diffraction (GIXRD) and Scanning Electron Microscope images were used for structural study of the deposited layers. Polycrystallinity and hexagonal wurtzite structure of the thin films is confirmed. For band gap calculations and for determination of optical behavior of the layers in different... 

    The Experimental Study of Adsorption and Separation of Hydrogen Gas Using Metal-organic Frameworks

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mohammad Mahdi (Author) ; Ghotbi, Cyrus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    Hydrogen gas is considered as a clean fuel and energy carrier that its storage for future uses is a challenging issue. One of the methods to store it, is adsorption on a group of adsorbents called metal-organic frameworks. In this research, one of these frameworks called ZIF-8, has been selected to study hydrogen storage capability. To evaluate the effect of having two metals, a mixture of two metals was used in the synthesis process. To characterize the structure of the synthesized adsorbents, X-ray powder diffraction (XRD),adsorption and desorption of nitrogen at temperature of 77 K, Field Emission Scanning Electron Microscopy (FESEM), energy-dispersive X-ray Spectroscopy (EDS) and... 

    The Durability of Geopolymer Concrete Confined with Fiber Reinforced Polymer Materials

    , M.Sc. Thesis Sharif University of Technology Anvari Sakhvidi, Mohammad Amin (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    Material durability is quite critical in corrosive environments. In this study, two hundred and seventy geopolymer concrete specimens with different mix designs were prepared and then wrapped with two different fiber reinforced polymer (FRP) materials. For 12960 hrs (eighteen months), the specimens were exposed to four different pHs (2.5, 7, 7.25, 12.5). The reliability and SEM analysis were performed after modeling the compressive strength over time. Based on the results, the reduction of the compressive strength was up to 22% in an acidic environment. The compressive strength of the specimens was increased up to 11 percent after alkaline solution exposure. The ductility of all specimens... 

    Investigation of Mechanical Properties and Durability of Alkali-activated Slag Concrete Lightened with Scoria and Its Microstructural Study

    , M.Sc. Thesis Sharif University of Technology Mahmoudzadeh Vaziri, Nima (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Concrete has long been one of the most widely used materials in the world. Cement, as a major component of concrete, due to the use of fossil fuels in its production process, emitting greenhouse gases such as carbon dioxide, which cause air pollution and environmental issues such as climate change. On the other hand, the wastes of industrial factories such as slag of the Blast furnace, due to their large volume and lack of sufficient space for storage of these wastes, lead to the release of these wastes that have alkaline structures into enviroment, causing environmental pollution Such as embankment pollution. Alkali-activated concrete has prevented the release of these pollutant into the... 

    Experimental Study of Mass Ratio and Carbon Nono Tube Size on Impact Toughness in Composite Polymers

    , M.Sc. Thesis Sharif University of Technology Salmani Givi, Foad (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    Nowadays, composites have wide applications in different industries especially in aerospace industry because of their high strength to weight ratio. Epoxy 5052 for its relatively good mechanical properties and high thermal resistance has vaidly use for manufacturing of large composite components. However; fracture toghness of epoxy resins is not good in comparison to their other exceptional properties. Therefore, researchers have endeavored to improve this characteristic with different approaches. One of these methods is nanotechnology. Since the components in aerospace industry are often under impact loads and impact strength of these materials has been less studied, effect of carbon... 

    Investigation on the Effect of Concentration Ratio of Iron Cations on the Formation of Carbon Nanotubes Synthezied via arc Discharge in Aqueous Solution

    , M.Sc. Thesis Sharif University of Technology Gheytani, Saman (Author) ; Simchi, Abdolreza (Supervisor) ; Khomamizadeh, Farzad (Supervisor)
    Abstract
    In this work, multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) were synthesized in an aqueous solution of iron chloride and solfate via arc discharge. Thermogravimetric (TG) analysis showed that the multi layer structures including carbon nanotubes (CNTs) and multi-shell graphite particles were formed when DI-water was used. SWCNTs were synthezied in the presence of the iron ions. The effect of [Fe3+]/[Fe2+] ratio on the CNTs yield were investigated. Raman spectroscopy investigations showed that the highest yield was obtained when the ferric to ferro ratio was one. When the concentration of Fe3+ ion was higher than that of Fe2+, many short tubes were... 

    Investigation of the Effects of Corrosive Environments on Mechanical and Microstructural Properties of Polymer and Portland Cement Concrete

    , M.Sc. Thesis Sharif University of Technology Ghassemi, Pedram (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    Polymer concrete is well-known for the quick repair of concrete structures and pavement. Many concrete structures such as bridges, offshore, and pavements are under cyclic loads when they are exposed to different environmental conditions during their lifespan. However, there are relatively few studies on the durability of Polymer concrete. The durability and fatigue performance of these structures are significant issues that should be considered. This study aims to investigate the long-term environmental effects on the mechanical properties of Polymer concrete. Therefore, polymer and ordinary cement concrete specimens were prepared and exposed to four chemical solutions with pH values of... 

    Feasibility Study of Deposition by SUT-PF

    , M.Sc. Thesis Sharif University of Technology Safarzadehamiri, Ali (Author) ; Vosoughi, Naser (Supervisor)
    Abstract
    Sharif University of Technology Plasma Focus (SUT-PF) is a Mather Type DPF device which has a 39 μF capacitor bank with 14 KV charging ability at its ultimate limit corresponding to 7 KJ stored energy. In the first step of this experiment, a test has been done at three distances 5, 7, 10 cm from anode tip with the different number of shots 20, 30, and 40 at 0 constant angles.In the following, a test is done at 5 and 10 degrees with 40 shots, and PF chamber has been filled up with nitrogen gas. Various tests have carried out for survey of this experiment, the result of which are as follow:The X-ray diffraction (XRD) analysis are used in order to reveal if the Nickel or Nickel nitride have... 

    Study of Microstructural Changes Associated with Internal Resistance of a Li-ion Battery

    , M.Sc. Thesis Sharif University of Technology Tabean, Saba (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    As one of the main features of Li-Ion batteries, internal resistance severely affects performance and characteristics of these batteries e.g. output power and working voltage. In this study, we tried to understand role of internal resistance on microstructure development and provide a correlative relation between microstructural features and performance of lithium-ion batteries. To catch this target, four types of Li-Ion battery chose, varying cathode type. These batteries were exposed to both normal and severe cycling conditions. Regarding to the key role of current rate on the performance of Li-ion batteries, an extensive research on different types of batteries at various current rates...