Loading...
Search for: analytic-expressions
0.006 seconds
Total 85 records

    Analytical prediction of the main oscillation power and spurious levels in optoelectronic oscillators

    , Article Journal of Lightwave Technology ; Vol. 32, issue. 5 , 2014 , pp. 978-985 ; ISSN: 07338724 Hosseini, S. E ; Banai, A ; Sharif University of Technology
    Abstract
    We use a nonlinear analytic approach to predict the main oscillation mode power and spurious levels in ultrapure microwave optoelectronic oscillators (OEOs). This approach takes into account N simultaneously mode falling inside the RF filter bandwidth and calculates all the dominant InterModulation Products (IMPs) that fall in the fundamental zone. We show that nonlinear microwave photonic links exhibit the capture effect. By considering this effect, we derive analytical expressions that govern the behavior of the OEOs in the steady state. We find that when the small-signal open-loop gain is increased beyond a critical value, OEOs start a multimode operation from which the spurious levels... 

    Circuit model for periodic array of slits with multiple propagating diffracted orders

    , Article IEEE Transactions on Antennas and Propagation ; Vol. 62, Issue 8 , August , 2014 , pp. 4041-4048 ; ISSN: 0018-926X Yarmoghaddam, E ; Shirmanesh, G. K ; Khavasi, A ; Mehrany, K ; Sharif University of Technology
    Abstract
    We propose an analytical circuit model for accurate analysis of one-dimensional periodic array of metallic strips. The proposed model is valid not only in subwavelength regime, but also for wavelengths shorter than the period of structure. The working frequency can reach the visible range and thus electromagnetic properties of periodic arrays of nano-slits can be analyzed by the proposed model. The proposed model remains valid for arbitrary incident angles even when nonspecular diffracted orders become propagating. Analytical expressions are derived explicitly in order to describe the parameters of the proposed circuit model. The circuit model is derived by assuming that only one guided mode... 

    Nonlinear dynamics of electrostatically actuated micro-resonator: Analytical solution by homotopy perturbation method

    , Article IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM ; July , 2014 , p. 1284-1289 Tajaddodianfar, F ; Yazdi, M. H ; Pishkenari, H. N ; Miandoab, E. M ; Sharif University of Technology
    Abstract
    Dynamic behavior of a electrostatically actuated MEMS resonator is investigated. A double clamped micro-beam under distributed DC and AC actuation is used. Corresponding single degree of freedom model is derived using Galerkin's decomposition method. Homotopy Perturbation Method (HPM) is implemented in order to derive analytical expression for frequency response of the micro-resonator. Comparison of the obtained results with the numerical simulations confirms that HPM agrees very well with numerical simulations for a wide range of parameters. Obtained analytical solution can be used for design and optimization of MEMS resonators  

    A combined first principles and analytical determination of the modulus of cohesion, surface energy, and the additional constants in the second strain gradient elasticity

    , Article International Journal of Solids and Structures ; Volume 50, Issue 24 , 2013 , Pages 3967-3974 ; 00207683 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    Mindlin's (1965) second strain gradient theory due to its competency in capturing the effects of edges, corners, and surfaces is of particular interest. Formulation in this framework, in addition to the usual Lamé constants, requires the knowledge of sixteen additional materials constants. To date, there are no successful experimental techniques for measuring these material parameters which reflect the discrete nature of matter. The present work gives an accurate remedy for the atomistic calculations of these parameters by utilizing the first principles density functional theory (DFT) for the calculations of the atomic force constants combined with an analytical formulation. It will be shown... 

    Theoretical investigation of the capture effect in intensity-modulation direct-detection microwave photonic links

    , Article Applied Optics ; Volume 52, Issue 28 , 2013 , Pages 7011-7021 ; 1559128X (ISSN) Hosseini, S. E ; Banai, A ; Sharif University of Technology
    Optical Society of American (OSA)  2013
    Abstract
    We introduce the capture effect concept in microwave photonic links (MWPLs) for the first time to our knowledge. The capture effect or the small-signal suppression is the change in the amplitude ratio of the two signals between input and output of the intensity-modulation direct-detection (IMDD) MWPLs. An analytical explanation of the performance of external IMDD MWPLs due to the effects of nonlinearity combined with sum of several input sinusoidal signals is given.We have investigated the suppression of a weaker signal in these links. General analytic expression for the small-signal suppression is derived using a nonlinear analytical approach. We show that the small-signal suppression is... 

    The potentiostatic electrodeposition of gold nanowire/nanotube in HAuCl4 solutions based on the model of recessed cylindrical ultramicroelectrode array

    , Article Journal of the Electrochemical Society ; Volume 160, Issue 6 , 2013 , Pages D279-D288 ; 00134651 (ISSN) Bagheri Hariri, M ; Dolati, A ; Siavash Moakhar, R ; Sharif University of Technology
    2013
    Abstract
    The mechanism of gold nanowire (AuNW) and nanotube (AuNT) electrodeposition in a cyanide-free solution is investigated for the first time based on the analytical model of Szabo et al. (A. Szabo et al., J. Electroanal. Chem. 217 (1987) 417) for recessed cylindrical ultramicroelectrode (UME). Track-etched Polycarbonate Template (PCT) is served as cylindrical UME ensemble/arrays. Firstly, Au is nucleated through a charge transfer step and when the Nernst thickness exceeds the pore length, the radial diffusion is established around pore mouths. By overlapping of these domains, the planar diffusion toward the whole PCT surface is obtained. An analytic expression for global diffusion coefficient... 

    Finite-SNR diversity-multiplexing tradeoff in multi-relay channels

    , Article 2013 Iran Workshop on Communication and Information Theory ; 2013 ; 9781467350235 (ISBN) Haddadpour, F ; Gholami, E ; Rastegar, S. H ; Behroozi, H ; Sharif University of Technology
    2013
    Abstract
    In this paper, we investigate the diversity-multiplexing tradeoff (DMT) for multi-relay channels in finite-SNR regime. In our analysis, we consider the decode and forward (DF) relaying strategy and a line of sight path from source to destination. First, we determine the outage probability in a multi-relay scenario and obtain its exact analytical expressions. Then, the outage probability of a multi-relay channel with relay selection is calculated and provided as a closed-form expression. Based on these results, we determine the DMT in finite-SNR regime. Finally, using simulation results, we show that our analysis has accurate results which coincides with that of obtained from Monte-Carlo... 

    High-fidelity magnetic characterization and analytical model development for switched reluctance machines

    , Article IEEE Transactions on Magnetics ; Volume 49, Issue 4 , 2013 , Pages 1505-1515 ; 00189464 (ISSN) Nasirian, V ; Kaboli, S ; Davoudi, A ; Moayedi, S ; Sharif University of Technology
    2013
    Abstract
    This paper proposes a new experimental procedure for magnetic characterization of switched reluctance machines. In the existing methods, phase voltage and current data are captured and further processed to find the flux linkage. Conventionally, assuming zero initial flux value, the flux linkage can be found by integrating the corresponding voltage term. However, the initial flux value is usually unknown, e.g., it can be nonzero when the current is zero due to the residual flux effect, and, thus, imposes error in magnetic characterization. The proposed method addresses this issue by considering an additional equation in steady state. This method injects a low-frequency sinusoidal current to... 

    Power of quantum channels for creating quantum correlations

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 86, Issue 6 , 2012 ; 10502947 (ISSN) Abad, T ; Karimipour, V ; Memarzadeh, L ; Sharif University of Technology
    2012
    Abstract
    Local noise can produce quantum correlations on an initially classically correlated state, provided that it is not represented by a unital or semiclassical channel. We find the power of any given local channel for producing quantum correlations on an initially classically correlated state. We introduce a computable measure for quantifying the quantum correlations in quantum-classical states, which is based on the noncommutativity of ensemble states in one party of the composite system. Using this measure we show that the amount of quantum correlations produced is proportional to the classical correlations in the initial state. The power of an arbitrary channel for producing quantum... 

    Eye diagram parameter extraction of nano scale VLSI interconnects

    , Article 2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems, EPEPS 2012 ; 2012 , Pages 327-330 ; 9781467325394 (ISBN) Mehri, M ; Sarvari, R ; Seydolhosseini, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, jitter due to both capacitive and inductive coupling is studied. Maximum frequency of driving signal on a wire is limited by its input rise time, fall time, pulse width, and the coupling effect from its neighbors. The analytical expressions to estimate the deterministic jitter time due to these effects are presented. The estimation is based on the fastest and slowest approximation of the signal waveform components. Also, we have extracted the eye opening parameters of the eye diagram. The inductance effects significance is shown on eye opening and jitter time. The 45nm technology is used for estimating the horizontal and vertical eye opening and jitter time. The presented... 

    An analytical approach for the free vibration analysis of generally laminated composite beams with shear effect and rotary inertia

    , Article International Journal of Mechanical Sciences ; Volume 65, Issue 1 , December , 2012 , Pages 97-104 ; 00207403 (ISSN) Jafari Talookolaei, R. A ; Abedi, M ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this paper, the free vibration analysis of generally laminated composite beam (LCB) based on Timoshenko beam theory are presented using the method of Lagrange multipliers where in the free vibration problem is posed as a constrained variational problem. The effect of material couplings (bending-tension, bending-twist, and tension-twist couplings) with the effects of shear deformation, rotary inertia and Poisson's effect are taken into account. Analytical expression for the natural frequencies and mode shapes are presented. The calculated natural frequencies are verified against some available results in the literature and very good agreement is observed. Furthermore, the effects of some... 

    Modeling geometric non-linearities in the free vibration of a planar beam flexure with a tip mass

    , Article Proceedings of the ASME Design Engineering Technical Conference, 12 August 2012 through 12 August 2012 ; Volume 4, Issue PARTS A AND B , August , 2012 , Pages 363-371 ; 9780791845035 (ISBN) Moeenfard, H ; Awtar, S ; Sharif University of Technology
    2012
    Abstract
    The objective of this work is to create an analytical framework to study the non-linear dynamics of beam flexures with a tip mass undergoing large deflections. Hamilton's principal is utilized to derive the equations governing the nonlinear vibrations of the cantilever beam and the associated boundary conditions. Then, using a single mode approximation, these non-linear partial differential equations are reduced to two coupled non-linear ordinary differential equations. These equations are solved analytically using combination of the method of multiple time scales and homotopy perturbation analysis. Closed-form, parametric analytical expressions are presented for the time domain response of... 

    Performance of UWB linked relay network with time-reversed transmission in the presence of channel estimation error

    , Article IEEE Transactions on Wireless Communications ; Volume 11, Issue 8 , 2012 , Pages 2958-2969 ; 15361276 (ISSN) Zeinalpour Yazdi, Z ; Nasiri Kenari, M ; Aazhang, B ; Sharif University of Technology
    2012
    Abstract
    In this paper, we present the bit error probability (BEP) of a relay network employing UWB links between its nodes. Since UWB systems can resolve many paths and are thus rich in multipath diversity, the use of the Rake diversity combining is very effective. However, because of the complexity, it is impractical in the scenarios with portable terminals or in the networks with multiple relays. Time-reversal technique, in which the transmitting nodes can do the pre-diversity filtering of UWB signal before transmission, is known as an approach to achieve the performance equivalent to the Rake combining without increasing the receiver complexity. The performance of such a network with simple... 

    Improving the optomechanical entanglement and cooling by photothermal force

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 85, Issue 6 , 2012 ; 10502947 (ISSN) Abdi, M ; Bahrampour, A. R ; Sharif University of Technology
    2012
    Abstract
    Cooling and entanglement in optomechanical systems coupled through radiation pressure and photothermal force are studied. To develop the photothermal model, we derive an expression for deformation constant of the force. By exploiting linearized quantum Langevin equations, we investigate the dynamics of such systems. According to our analysis, in addition to separate action of radiation pressure and photothermal force, their cross-correlation effect plays an important role in the dynamics of the system. We also achieve an exact relation for the phonon number of the mechanical resonator in such systems, and then we derive an analytical expression for it at the weak-coupling limit. At the... 

    Quantum renormalization group for ground-state fidelity

    , Article New Journal of Physics ; Volume 14 , 2012 ; 13672630 (ISSN) Langari, A ; Rezakhani, A. T ; Sharif University of Technology
    Abstract
    Ground-state fidelity (GSF) and quantum renormalization group (QRG) theory have proven to be useful tools in the study of quantum critical systems. Here we lay out a general, unified formalism of GSF and QRG; specifically, we propose a method for calculating GSF through QRG, obviating the need for calculating or approximating ground states. This method thus enhances the characterization of quantum criticality as well as scaling analysis of relevant properties with system size. We illustrate the formalism in the one-dimensional Ising model in a transverse field (ITF) and the anisotropic spin-1/2 Heisenberg (XXZ) model. Explicitly, we find the scaling behavior of the GSF for the ITF model in... 

    Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory

    , Article International Journal of Engineering Science ; Volume 54 , May , 2012 , Pages 99-105 ; 00207225 (ISSN) Baghani, M ; Sharif University of Technology
    2012
    Abstract
    In this paper an analytical solution for size-dependent response of cantilever micro-beams is presented. Using the modified couple stress theory, the small scale effects are accounted for. Employing the Modified Variational Iteration Method, efficient and accurate analytical expressions for the deflection of the micro-beam are presented. Very good agreement is observed between the present work results and available experimental data. This study may be helpful to characterize the size-dependent mechanical properties of MEMS. Consequently, the proposed analytical solution can be used as an efficient tool for studying the effects of the material or geometrical parameters on small scale devices... 

    Theoretical study of high repetition rate short pulse generation with fiber optical parametric amplification

    , Article Journal of Lightwave Technology ; Volume 30, Issue 9 , 2012 , Pages 1263-1268 ; 07338724 (ISSN) Vedadi, A ; Ariaei, A. M ; Jadidi, M. M ; Salehi, J. A ; Sharif University of Technology
    2012
    Abstract
    In this paper, we study theoretically the generation of high repetition rate short pulses using fiber optical parametric amplification. We show that the pulse shape and duration depend on the signal location relatively to the pump frequency. We demonstrate that in order to get the shortest pulse width, the signal must be located at one of the extremities of the gain spectrum associated with the pump peak power. We derive the analytical expression of the pulse shape in this case and compare it to the exponential gain regime case. Using numerical simulations, we also analyze the impact of walk-off and pump phase modulation that is required to suppress Stimulated Brillouin Scattering and derive... 

    Approximate expressions for resonant shifts in the reflection of Gaussian wave packets from two-dimensional photonic crystal waveguides

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 29, Issue 4 , 2012 , Pages 683-690 ; 07403224 (ISSN) Miri, M ; Khavasi, A ; Alishahi, F ; Mehrany, K ; Rashidian, B ; Sharif University of Technology
    Optical Society of American (OSA)  2012
    Abstract
    In this paper, enhanced spatial and temporal shifts in the reflection of Gaussian wave packets from twodimensional photonic crystal waveguides supporting above-the-light-line leaky modes are studied, for the first time to our best knowledge. Particular attention is given to two important special cases, namely, harmonic Gaussian beams and Gaussian-pulse uniform plane waves. Analytical expressions are given for enhanced spatial and temporal shifts when the stationary phase approximation holds and the incident wave excites above-the-light-line leaky modes. The enhanced spatial and temporal shifts of Gaussian wave packets are thereby related to each other via the group velocity of the excited... 

    Dual criterion equivalent linearization approach for yielding structures under earthquake excitation

    , Article Structural Design of Tall and Special Buildings ; Volume 21, Issue 3 , 2012 , Pages 155-177 ; 15417794 (ISSN) Rahmatabadi, P ; Khaloo, A ; Sharif University of Technology
    Abstract
    In order to estimate both maximum displacement and maximum inertia force of bilinear hysteretic system subjected to earthquake motions, an equivalent linearization approach with new effective parameters is presented. Effective mass and effective damping ratio as pair of effective parameters instead of the effective period and effective damping ratio in existing equivalent linear systems are introduced. Two error measures for displacement and inertia force are defined. Error distributions over a two-dimensional parameter space of effective parameters are analysed, and the parameters are determined through a statistical approach with a dual optimization criterion for displacement and inertia... 

    Van der Waals energy surface of a carbon nanotube sheet

    , Article Solid State Communications ; Volume 152, Issue 3 , February , 2012 , Pages 225-230 ; 00381098 (ISSN) Motahari, S ; Shayeganfar, F ; Neek Amal, M ; Sharif University of Technology
    Abstract
    The van der Walls interaction between a carbon nanotube sheet (CNTS) and a rare gas atom, is studied using both atomistic and continuum approaches. We present analytical expressions for the van der Waals energy of continuous nanotubes interacting with a rare gas atom. It is found that the continuum approach does not properly treat the effect of atomistic configurations on the energy surfaces. The energy barriers are small as compared to the thermal energy, which implies the free motion above the CNTS in heights about one nanometer. In contrast to the energy surface of a graphene sheet, the honeycomb lattice structure in the energy surface of a CNTS is imperceivable. Defects alter the energy...