Loading...
Search for: advection
0.005 seconds
Total 43 records

    Extending a hybrid finite-volume-element method to solve laminar diffusive flame

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Vol. 66, issue. 2 , August , 2014 , pp. 181-210 ; ISSN: 10407790 Darbandi, M ; Ghafourizadeh, M ; Sharif University of Technology
    Abstract
    We extend a hybrid finite-volume-element (FVE) method to treat the laminar reacting flow in cylindrical coordinates considering the collocation of all chosen primitive variables. To approximate the advection fluxes at the cell faces, we use the upwind-biased physical influence scheme PIS and derive a few new extended expressions applicable in the cylindrical frame. These expressions are derived for both the Navier-Stokes and reactive flow governing equations, of which the latter expressions are considered novel in the finite-volume formulation. To validate our derived expressions, the current results are compared with the experimental data and other available numerical solutions. The results... 

    Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks

    , Article Canadian Journal of Civil Engineering ; Volume 40, Issue 2 , 2013 , Pages 140-150 ; 03151468 (ISSN) Razmi, A. M ; Bakhtyar, R ; Firoozabadi, B ; Barry, D. A ; Sharif University of Technology
    2013
    Abstract
    The hydraulic efficiency of sedimentation basins is reduced by short-circuiting, circulation zones and bottom particleladen jets. Baffles are used to improve the sediment tank performance. In this study, laboratory experiments were used to examine the hydrodynamics of several baffle configurations. An accompanying numerical analysis was performed based on the 2-D Reynolds-averaged Navier-Stokes equations along with the k-ε turbulence closure model. The numerical model was supplemented with the volume-of-fluid technique, and the advection-diffusion equation to simulate the dynamics of particle-laden flow. Model predictions compared well with the experimental data. An empirical function was... 

    Turbulence and additive effects on ignition delay in supersonic combustion

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 227, Issue 1 , 2013 , Pages 93-99 ; 09544100 (ISSN) Tahsini, A. M ; Sharif University of Technology
    2013
    Abstract
    Numerical study of two-dimensional supersonic hydrogen-air mixing layer is performed to investigate the effects of turbulence and chemical additive on ignition distance. Chemical reaction is treated using detail kinetics. Advection upstream splitting method is used to calculate the fluxes, and one-equation turbulence model is chosen here to simulate the considered problem. Hydrogen peroxide is used as an additive and the results show that inflow turbulence and chemical additive may drastically decrease the ignition delay in supersonic combustion  

    Investigation of a new flux scheme for the numerical simulation of the supersonic intake flow

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 226, Issue 11 , August , 2012 , Pages 1445-1454 ; 09544100 (ISSN) Soltani, M. R ; Younsi, J. S ; Farahani, M ; Sharif University of Technology
    2012
    Abstract
    A numerical code for supersonic intake design with a proper simulation of the normal and/or oblique shocks, boundary layer development, interaction of the shock and the boundary layer, as well as prediction of the flow separation is of great help to the designers. In this research, a numerical code is developed to solve the inner and outer flow fields of the intake and validated with various experimental tests. The intake is an axisymmetric external compression one. Roe scheme and new schemes, AUSM+-up (for all speed) and Advection Upstream Splitting Method with Pressure-Based Weight function (AUSMPW), are used to compute the convective fluxes. The original version of the AUSMPW scheme has... 

    First passage time distribution of chaperone driven polymer translocation through a nanopore: Homopolymer and heteropolymer cases

    , Article Journal of Chemical Physics ; Volume 135, Issue 24 , 2011 ; 00219606 (ISSN) Abdolvahab, R. H ; Metzler, R ; Ejtehadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Péclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Péclet number. We investigate the effect of the chaperone size on... 

    Numerical Simulation of Cavitating Flows with Compressibility Effects

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Zakaria (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the numerical simulation of cavitating flows with compressibility effects is performed. The algorithm employs the multiphase Euler equations with homogeneous equilibrium model. The baseline differential equations system is similar to the one-phase system of equations and comprised of the mixture density, mixture momentums and mixture energy equations. Thephases considered for cavitating flows is liquid-vapor and liquid-gas fields. The system of governing equations is discretized using a cell-centered finite volume AUSM’s upwind scheme. The computations are presented for steady noncavitating/cavitating flows around 1D/2Dproblems for different conditions. A sensitivity study is... 

    Computational Simulation of Micromixing, Using LBM

    , M.Sc. Thesis Sharif University of Technology Hosseini-zade, Mohammad (Author) ; Taeibi-Rahni, Mohammad (Supervisor)
    Abstract
    Nowadays, microfluidic flow appears in many applications, such as medical, biological, and chemical industries. Where as, micromixing, which deals with mixing of microfluidic flow in micro channels, appears to be an important issue to many researchers. In such systems, molecular diffusion plays an important role. On the other hand, lattice Boltzmann method is a relatively new simulation technique for complex fluid systems and has become interesting to many researchers in computational physics. In this study, computational simulation of such mixing process, using LBM is the main objective. Different obstacle layouts inside a microchannel have been investigated. Chaotic advection and jet... 

    Microswimmer-induced chaotic mixing

    , Article Journal of Fluid Mechanics ; Volume 779 , 2015 , Pages 669-683 ; 00221120 (ISSN) Jalali, M.A ; Khoshnood, A ; Alam, M. R ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    Efficient mixing, typically characterised by chaotic advection, is hard to achieve in low Reynolds number conditions because of the linear nature of the Stokes equation that governs the motion. Here we show that low Reynolds number swimmers moving in quasi-periodic orbits can result in considerable stretching and folding of fluid elements. We accurately follow packets of tracers within the fluid domain and show that their trajectories become chaotic as the swimmer's trajectory densely fills its invariant torus. The mixing process is demonstrated in two dimensions using the Quadroar swimmer that autonomously propels and tumbles along quasi-periodic orbits with multi-loop turning trajectories.... 

    Two-dimensional numerical investigation of a micro combustor

    , Article Scientia Iranica ; Volume 17, Issue 6 B , December , 2010 , Pages 433-442 ; 10263098 (ISSN) Irani Rahaghi, A ; Saidi, M. S ; Saidi, M. H ; Shafii, M. B ; Sharif University of Technology
    2010
    Abstract
    In this paper, a two-dimensional numerical approach is used to study the effect of micro combustor height, mass flow rate and external convection heat transfer coefficient on the temperature and species mass fraction profiles. A premixed mixture of H2-Air with a multi-step chemistry is used. The transient gas phase energy and species conservation equations result in an Advection-Diffusion-Reaction system that leads to two stiff systems of PDEs. In the present work, the computational domain is solved through the Strang splitting method, which is suitable for a nonlinear stiff system of PDEs. A revised boundary condition for the velocity equation is applied and its effect on the flow... 

    Tracer transport in naturally fractured reservoirs: Analytical solutions for a system of parallel fractures

    , Article International Journal of Heat and Mass Transfer ; Volume 103 , 2016 , Pages 627-634 ; 00179310 (ISSN) Abbasi, M ; Hossieni, M ; Izadmehr, M ; Sharifi, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In naturally fractured reservoirs, modeling of mass transfer between matrix blocks and fractures is an important subject during gas injection or contaminant transport. This study focuses on developing an exact analytical solution to transient tracer transport problem along a discrete fracture in a porous rock matrix. Using Gauss-Legendre quadrature, an expression was obtained in the form of a double integral which is considered as the general transient solution. This solution has the ability to account the following phenomena: advective transport in fractures and molecular diffusion from the fracture to the matrix block. Certain assumptions are made which allow the problem to be formulated... 

    One-dimensional numerical investigation of a cylindrical micro combustor

    , Article Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009 ; Volume 3 , 2009 , Pages 115-123 ; 9780791843581 (ISBN) Irani R, A ; Saediamiri, M ; Saidi, M. S ; Saidi, M. H ; Shafii, M. B ; Sharif University of Technology
    Abstract
    In this paper, a one-dimensional numerical approach is used to study the effect of various parameters such as micro combustor diameter, mass flow rate and external convection heat transfer coefficient on the temperature and species mass fraction profiles. A premixed mixture of H2-Air with a multi-step chemistry (9 species and 19 reactions) is used and thermal conductivity of the mixture is considered as a function of species thermal conductivity and temperature by using a set of new relations. The transient gas phase energy and species conservation equations result in an Advection-Diffusion-Reaction system (A-D-R) that leads to two stiff systems of PDEs, which can not be solved by... 

    Modeling of Dynamic Kill in Gas-Condensate Well

    , M.Sc. Thesis Sharif University of Technology Daneshpajouh, Abouzar (Author) ; Shad, Saeed (Supervisor)
    Abstract
    By exploring huge gas-condensate reservoirs, three-phase transient flow modeling demonstrates its crucial role in designing dynamic kill, relief well parameters and kill procedure of such wells. Controlling gas-condensate well needs robust transient three phase models capable of capturing discontinuities in density, geometry and velocity of phases. In this paper, two phase Advection-Upstream-Splitting-Method hybrid scheme is extended to three-phase model capable of modeling blowout and dynamic kill in gas-condensate-water wells. Density and viscosity changes are calculated using Peng-Robinson equation of state and in according, flow model parameters are corrected.The capability of this model... 

    Inverse design of 2-D subsonic ducts using flexible string algorithm

    , Article Inverse Problems in Science and Engineering ; Volume 17, Issue 8 , 2009 , Pages 1037-1057 ; 17415977 (ISSN) Nili Ahmadabadi, M ; Dural, M ; Hajilouy Benisi, A ; Ghadak, F ; Sharif University of Technology
    Abstract
    The duct inverse design in fluid flow problems usually involves finding the wall shape associated with a prescribed distribution of wall pressure or velocity. In this investigation, an iterative inverse design method for 2-D subsonic ducts is presented. In the proposed method, the duct walls shape is changed under a novel algorithm based on the deformation of a virtual flexible string in flow. The deformation of the string due to the local flow conditions resulting from changes in wall geometry is observed until the target shape satisfying the prescribed wall's pressure distribution is reached. The flow field at each step is analysed using Euler equations and the advection upstream splitting... 

    A Direct Design Method Based on the 3-Dimensional Euler Equations with Application in Internal Subsonic and Supersonic Flows

    , M.Sc. Thesis Sharif University of Technology Nejati, Ashkan (Author) ; Taeibi-Rahni, Mohammad (Supervisor) ; Ghadak, Farhad (Supervisor)
    Abstract
    In this work, a direct design approach for designing a surface shape (inverse design problem) has been developed in which both the target surface pressure and the unknown nodal coordinates appear explicitly in the formulations. The final discretized form of the governing equations (unified formulation) can be used for both analysis and shape design problems. Shape design problems in the context of the steady inviscid and compressible flow, based on the three-dimensional Euler equations, were directly solved to achieve a prescribed pressure along the solid boundaries. The AUSM+ scheme was used to discretize the flux terms in the Euler equations, in which the inviscid flux is splitted into... 

    Numerical calculation of turbulent reacting flow in a model gas-turbine combustor

    , Article 41st AIAA Thermophysics Conference, 22 June 2009 through 25 June 2009 ; 2009 ; 9781563479755 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this work, an efficient bi-implicit strategy is suitably developed within the context of a hybrid finite volume element method to solve axisymmetric turbulent reactive flow in a model gas turbine combustor. Based on the essence of a control-volume-based finite-element method, the formulation benefits from the geometrical flexibility of the finite element methods while the discrete algebraic governing equations are derived through applying the conservation laws to discrete cells distributed in the solution domain. To enhance the efficiency of method, we extend the physical influence upwinding scheme to cylindrical coordinates. This extension helps to improve the advection flux... 

    Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection

    , Article Analytica Chimica Acta ; Volume 1022 , 2018 , Pages 96-105 ; 00032670 (ISSN) Vatankhah, P ; Shamloo, A ; Sharif University of Technology
    Abstract
    Recent advances in the field of microfabrication have made the application of high-throughput microfluidics feasible. Mixing which is an essential part of any miniaturized standalone system remains the key challenge. This paper proposes a geometrically simple micromixer for efficient mixing for high-throughput microfluidic devices. The proposed micromixer utilizes a curved microchannel (spiral microchannel) to induce chaotic advection and enhance the mixing process. It is shown that the spiral microchannel is more efficient in comparison to a straight microchannel, mixing wise. The pressure drop in the spiral microchannel is only slightly higher than that in the straight microchannel. It is... 

    Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil

    , Article Journal of Hazardous Materials ; Volume 342 , 2018 , Pages 270-278 ; 03043894 (ISSN) Safdari, M. S ; Kariminia, H. R ; Rahmati, M ; Fazlollahi, F ; Polasko, A ; Mahendra, S ; Wilding, W. V ; Fletcher, T. H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Bioremediation of soil and groundwater sites contaminated by petroleum hydrocarbons is known as a technically viable, cost-effective, and environmentally sustainable technology. The purpose of this study is to investigate laboratory-scale bioremediation of petroleum-hydrocarbon contaminated soil through development of eight bioreactors, two bioreactors for each bioremediation mode. The modes were: (1) natural attenuation (NA); (2) biostimulation (BS) with oxygen and nutrients; (3) bioaugmentation (BA) with hydrocarbon degrading isolates; (4) a combination of biostimulation and bioaugmentation (BS-BA). Total petroleum hydrocarbons (TPH) mass balance over the bioreactors showed about 2% of... 

    A non-equilibrium relaxation model for fast depressurization of pipelines

    , Article Annals of Nuclear Energy ; Volume 111 , 2018 , Pages 1-11 ; 03064549 (ISSN) Nouri Borujerdi, A ; Shafiei Ghazani, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, transient depressurization of high pressure pipelines containing initially subcooled liquid is simulated numerically by using thermodynamic non-equilibrium and choking condition model. The numerical method relies on finite volume. The convective terms of cell boundaries are discretized by Advection Upstream Splitting Method (AUSM+ - up) with a proposal of partially implicit approach for source terms. Different void fraction correlations are applied to simulate two phase shock tubes as well as the depressurization process. By comparison between the present results and previous experimental data, the best void fraction correlation is introduced. The results indicate that the... 

    Evaluation of dike-type causeway impacts on the flow and salinity regimes in Urmia Lake, Iran

    , Article Journal of Great Lakes Research ; Volume 35, Issue 1 , 2009 , Pages 13-22 ; 03801330 (ISSN) Zeinoddini, M ; Tofighi, M. A ; Vafaee, F ; Sharif University of Technology
    2009
    Abstract
    Urmia Lake, located in a closed basin in north-west Iran, is the largest lake (5000-6000 km2) in the Middle East. It is very saline with total dissolved salts reaching 200 g/l compared with a normal seawater salinity of about 35 g/l. The construction of a causeway, which was initiated in 1979 but then abandoned until the early 2000s, is near completion and will provide road access between the western and eastern provinces. The causeway has an opening 1.25 km long and divides Urmia Lake into a northern and southern basin and restricts water exchange. The flow and salinity regimes are affected by the presence of this new causeway, and there are concerns over the well being of the Artemia... 

    Numerical Analysis of a Supersonic Jet into a Subsonic Compressible Crossflow and the Effects on a Downstream Fin

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Masoud (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    Jet into cross-flow interaction is one of the complex and fundamental problems in fluids dynamics and heat transfer, which is observed in various applications, such as pollutant discharges, film cooing of turbine blades, combustion chamber design of jet engines, trust vectoring systems, boundary layer control, and vertical short take-off and landing (VSTOL) aircrafts. One of the applications of this kind of flow is injection of supersonic jet into subsonic compressible cross-flow, which is used in trust vectoring systems of missiles. In this research, the two-dimensional interactions of supersonic jet into subsonic compressible cross-flow were investigated as two cases: "without a fin" and...