Loading...
Search for: advection
0.007 seconds
Total 43 records

    Analysis of a Mathematical Model Describing the Geographical Spread of Dengue Disease

    , Ph.D. Dissertation Sharif University of Technology Gazori, Fereshteh (Author) ; Hesaaraki, Mahmoud (Supervisor)
    Abstract
    Dengue is one of the most important infectious diseases in the world. This disease is a viral infection that is transmitted to humans through the bite of a mosquito called Aedes aegypti. For this reason, geographical regions infected with this type of mosquito are at risk of Dengue outbreak. In this thesis, we first present a mathematical model describing the geographical spread of Dengue disease, which includes the movement of both the human population and the winged mosquito population. This model is derived from a mixed system of partial and ordinary differential equations. Our proposed model has the ability to consider the possibility of asymptomatic infection, so that the presence of... 

    A Direct Design Method Based on the 3-Dimensional Euler Equations with Application in Internal Subsonic and Supersonic Flows

    , M.Sc. Thesis Sharif University of Technology Nejati, Ashkan (Author) ; Taeibi-Rahni, Mohammad (Supervisor) ; Ghadak, Farhad (Supervisor)
    Abstract
    In this work, a direct design approach for designing a surface shape (inverse design problem) has been developed in which both the target surface pressure and the unknown nodal coordinates appear explicitly in the formulations. The final discretized form of the governing equations (unified formulation) can be used for both analysis and shape design problems. Shape design problems in the context of the steady inviscid and compressible flow, based on the three-dimensional Euler equations, were directly solved to achieve a prescribed pressure along the solid boundaries. The AUSM+ scheme was used to discretize the flux terms in the Euler equations, in which the inviscid flux is splitted into... 

    Numerical Simulation of Cavitating Flows with Compressibility Effects

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Zakaria (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the numerical simulation of cavitating flows with compressibility effects is performed. The algorithm employs the multiphase Euler equations with homogeneous equilibrium model. The baseline differential equations system is similar to the one-phase system of equations and comprised of the mixture density, mixture momentums and mixture energy equations. Thephases considered for cavitating flows is liquid-vapor and liquid-gas fields. The system of governing equations is discretized using a cell-centered finite volume AUSM’s upwind scheme. The computations are presented for steady noncavitating/cavitating flows around 1D/2Dproblems for different conditions. A sensitivity study is... 

    Numerical Analysis of a Supersonic Jet into a Subsonic Compressible Crossflow and the Effects on a Downstream Fin

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Masoud (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    Jet into cross-flow interaction is one of the complex and fundamental problems in fluids dynamics and heat transfer, which is observed in various applications, such as pollutant discharges, film cooing of turbine blades, combustion chamber design of jet engines, trust vectoring systems, boundary layer control, and vertical short take-off and landing (VSTOL) aircrafts. One of the applications of this kind of flow is injection of supersonic jet into subsonic compressible cross-flow, which is used in trust vectoring systems of missiles. In this research, the two-dimensional interactions of supersonic jet into subsonic compressible cross-flow were investigated as two cases: "without a fin" and... 

    Numerical and Experimental Investigation of Supersonic Flow in an Axisymmetric Inlet

    , M.Sc. Thesis Sharif University of Technology Sepahi Younsi, Javad (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    No considerable investigation of inlet aerodynamics has been done in our country up to now. Some numerical study in this field has been accomplished without any experimental test. To solve the inner and outer flow field of the inlet in this investigation, the numerical methods has been used and also experimental tests for code validation has been done. The inlet is an axisymmetric external compression one. In the numerical simulation the Navier-Stokes equations with explicit finite volume method have been used to model the axisymmetric, steady and turbulent flow field of the inlet in a structured grid. Viscous fluxes with a finite volume method, molecular viscosity coefficient with the... 

    Computational Simulation of Supersonic Flow in an Axisymmetric Mixed Compression Inlet

    , M.Sc. Thesis Sharif University of Technology Zarea Chavoshi, Majid (Author) ; Tayyebi Rahni, Mohammad (Supervisor) ; Ebrahimi, Abbas (Supervisor)
    Abstract
    Inlet performance is an important field in aerodynamic design of aerial vehicle engines. This study has been focused on nummerical investigation of inlet performance. For this purpose, a density based finite volume CFD code has been developed to solve supersonic axisymmetric flow in a mixed compression inlet. A structured multi-block grid and an explicit time discritization of Reynolds averaged Navier-Stokes (RANS) equations have been used. Furthermore, both Roe’s approximated Riemann solver and advection upwind splitting method (AUSM) have been utilized for computing inviscid flux vectors. Also, the monotone upstream centered schemes for conservation laws (MUSCL) extrapolation with Van... 

    Modeling of Dynamic Kill in Gas-Condensate Well

    , M.Sc. Thesis Sharif University of Technology Daneshpajouh, Abouzar (Author) ; Shad, Saeed (Supervisor)
    Abstract
    By exploring huge gas-condensate reservoirs, three-phase transient flow modeling demonstrates its crucial role in designing dynamic kill, relief well parameters and kill procedure of such wells. Controlling gas-condensate well needs robust transient three phase models capable of capturing discontinuities in density, geometry and velocity of phases. In this paper, two phase Advection-Upstream-Splitting-Method hybrid scheme is extended to three-phase model capable of modeling blowout and dynamic kill in gas-condensate-water wells. Density and viscosity changes are calculated using Peng-Robinson equation of state and in according, flow model parameters are corrected.The capability of this model... 

    Computational Simulation of Micromixing, Using LBM

    , M.Sc. Thesis Sharif University of Technology Hosseini-zade, Mohammad (Author) ; Taeibi-Rahni, Mohammad (Supervisor)
    Abstract
    Nowadays, microfluidic flow appears in many applications, such as medical, biological, and chemical industries. Where as, micromixing, which deals with mixing of microfluidic flow in micro channels, appears to be an important issue to many researchers. In such systems, molecular diffusion plays an important role. On the other hand, lattice Boltzmann method is a relatively new simulation technique for complex fluid systems and has become interesting to many researchers in computational physics. In this study, computational simulation of such mixing process, using LBM is the main objective. Different obstacle layouts inside a microchannel have been investigated. Chaotic advection and jet... 

    Evaluation of dike-type causeway impacts on the flow and salinity regimes in Urmia Lake, Iran

    , Article Journal of Great Lakes Research ; Volume 35, Issue 1 , 2009 , Pages 13-22 ; 03801330 (ISSN) Zeinoddini, M ; Tofighi, M. A ; Vafaee, F ; Sharif University of Technology
    2009
    Abstract
    Urmia Lake, located in a closed basin in north-west Iran, is the largest lake (5000-6000 km2) in the Middle East. It is very saline with total dissolved salts reaching 200 g/l compared with a normal seawater salinity of about 35 g/l. The construction of a causeway, which was initiated in 1979 but then abandoned until the early 2000s, is near completion and will provide road access between the western and eastern provinces. The causeway has an opening 1.25 km long and divides Urmia Lake into a northern and southern basin and restricts water exchange. The flow and salinity regimes are affected by the presence of this new causeway, and there are concerns over the well being of the Artemia... 

    The effect of pH and ionic strength on the transport of alumina nanofluids in water-saturated porous media: Experimental and modeling study

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 137, Issue 4 , 2019 , Pages 1169-1179 ; 13886150 (ISSN) Zareei, M ; Yoozbashizadeh, H ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Alumina nanofluids are one of the most useful nanofluids, especially for increasing the thermal conductivity. Due to importance of porous media in the improvement of heat transfer, this study investigates the transport and retention of gamma alumina/water nanofluid in the water-saturated porous media. For this purpose, alumina nanofluids were introduced to the porous media consisting of water-saturated glass beads possessing various pH values (4, 7 and 10) and different ionic strengths (0.001 M of KCl, CaCl2, AlCl3, K2SO4, CaSO4, Al2(SO4)3, K2CO3 and CaCO3). Then the break through curve of each experiment was drawn and modeled by combining classical filtration theory with... 

    Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection

    , Article Analytica Chimica Acta ; Volume 1022 , 2018 , Pages 96-105 ; 00032670 (ISSN) Vatankhah, P ; Shamloo, A ; Sharif University of Technology
    Abstract
    Recent advances in the field of microfabrication have made the application of high-throughput microfluidics feasible. Mixing which is an essential part of any miniaturized standalone system remains the key challenge. This paper proposes a geometrically simple micromixer for efficient mixing for high-throughput microfluidic devices. The proposed micromixer utilizes a curved microchannel (spiral microchannel) to induce chaotic advection and enhance the mixing process. It is shown that the spiral microchannel is more efficient in comparison to a straight microchannel, mixing wise. The pressure drop in the spiral microchannel is only slightly higher than that in the straight microchannel. It is... 

    Turbulence and additive effects on ignition delay in supersonic combustion

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 227, Issue 1 , 2013 , Pages 93-99 ; 09544100 (ISSN) Tahsini, A. M ; Sharif University of Technology
    2013
    Abstract
    Numerical study of two-dimensional supersonic hydrogen-air mixing layer is performed to investigate the effects of turbulence and chemical additive on ignition distance. Chemical reaction is treated using detail kinetics. Advection upstream splitting method is used to calculate the fluxes, and one-equation turbulence model is chosen here to simulate the considered problem. Hydrogen peroxide is used as an additive and the results show that inflow turbulence and chemical additive may drastically decrease the ignition delay in supersonic combustion  

    Investigation of a new flux scheme for the numerical simulation of the supersonic intake flow

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 226, Issue 11 , August , 2012 , Pages 1445-1454 ; 09544100 (ISSN) Soltani, M. R ; Younsi, J. S ; Farahani, M ; Sharif University of Technology
    2012
    Abstract
    A numerical code for supersonic intake design with a proper simulation of the normal and/or oblique shocks, boundary layer development, interaction of the shock and the boundary layer, as well as prediction of the flow separation is of great help to the designers. In this research, a numerical code is developed to solve the inner and outer flow fields of the intake and validated with various experimental tests. The intake is an axisymmetric external compression one. Roe scheme and new schemes, AUSM+-up (for all speed) and Advection Upstream Splitting Method with Pressure-Based Weight function (AUSMPW), are used to compute the convective fluxes. The original version of the AUSMPW scheme has... 

    Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil

    , Article Journal of Hazardous Materials ; Volume 342 , 2018 , Pages 270-278 ; 03043894 (ISSN) Safdari, M. S ; Kariminia, H. R ; Rahmati, M ; Fazlollahi, F ; Polasko, A ; Mahendra, S ; Wilding, W. V ; Fletcher, T. H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Bioremediation of soil and groundwater sites contaminated by petroleum hydrocarbons is known as a technically viable, cost-effective, and environmentally sustainable technology. The purpose of this study is to investigate laboratory-scale bioremediation of petroleum-hydrocarbon contaminated soil through development of eight bioreactors, two bioreactors for each bioremediation mode. The modes were: (1) natural attenuation (NA); (2) biostimulation (BS) with oxygen and nutrients; (3) bioaugmentation (BA) with hydrocarbon degrading isolates; (4) a combination of biostimulation and bioaugmentation (BS-BA). Total petroleum hydrocarbons (TPH) mass balance over the bioreactors showed about 2% of... 

    Multiscale modeling of coupled thermo-hydro-mechanical analysis of heterogeneous porous media

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 391 , 2022 ; 00457825 (ISSN) Saeedmonir, S ; Khoei, A. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This paper presents a numerical multiscale formulation for analysis of the transient heat and fluid flow in deformable heterogeneous porous media. Due to the heterogeneity of the media, the direct numerical simulation of the micro-structures leads to high computational costs. Hence, the multi-scale method can provide an efficient computational procedure. To this end, the first-order computational homogenization is adopted for two-scale simulation of THM problems. The governing equations of the problem contain a stress equilibrium equation, a mass continuity equation and an advection–diffusion equation in a fully coupled manner. Accordingly, the proper virtual power relations are defined as a... 

    Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks

    , Article Canadian Journal of Civil Engineering ; Volume 40, Issue 2 , 2013 , Pages 140-150 ; 03151468 (ISSN) Razmi, A. M ; Bakhtyar, R ; Firoozabadi, B ; Barry, D. A ; Sharif University of Technology
    2013
    Abstract
    The hydraulic efficiency of sedimentation basins is reduced by short-circuiting, circulation zones and bottom particleladen jets. Baffles are used to improve the sediment tank performance. In this study, laboratory experiments were used to examine the hydrodynamics of several baffle configurations. An accompanying numerical analysis was performed based on the 2-D Reynolds-averaged Navier-Stokes equations along with the k-ε turbulence closure model. The numerical model was supplemented with the volume-of-fluid technique, and the advection-diffusion equation to simulate the dynamics of particle-laden flow. Model predictions compared well with the experimental data. An empirical function was... 

    A non-equilibrium relaxation model for fast depressurization of pipelines

    , Article Annals of Nuclear Energy ; Volume 111 , 2018 , Pages 1-11 ; 03064549 (ISSN) Nouri Borujerdi, A ; Shafiei Ghazani, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, transient depressurization of high pressure pipelines containing initially subcooled liquid is simulated numerically by using thermodynamic non-equilibrium and choking condition model. The numerical method relies on finite volume. The convective terms of cell boundaries are discretized by Advection Upstream Splitting Method (AUSM+ - up) with a proposal of partially implicit approach for source terms. Different void fraction correlations are applied to simulate two phase shock tubes as well as the depressurization process. By comparison between the present results and previous experimental data, the best void fraction correlation is introduced. The results indicate that the... 

    Simulation of compressible and incompressible flows through planar and axisymmetric abrupt expansions

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 141, Issue 11 , 2019 ; 00982202 (ISSN) Nouri Borujerdi, A ; Shafiei Ghazani, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2019
    Abstract
    In this paper, compressible and incompressible flows through planar and axisymmetric sudden expansion channels are investigated numerically. Both laminar and turbulent flows are taken into consideration. Proper preconditioning in conjunction with a second-order accurate advection upstream splitting method (AUSM+-up) is employed. General equations for the loss coefficient and pressure ratio as a function of expansion ratio, Reynolds number, and the inlet Mach number are obtained. It is found that the reattachment length increases by increasing the Reynolds number. Changing the flow regime to turbulent results in a decreased reattachment length. Reattachment length increases slightly with a... 

    A pressure-based algorithm for internal compressible turbulent flows through a geometrical singularity

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 75, Issue 2 , 2019 , Pages 127-143 ; 10407790 (ISSN) Nouri Borujerdi, A ; Shafiei Ghazani, A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Compressible turbulent flow through the abrupt enlargement in pipes is studied numerically by means of Advection Upstream Splitting Method (AUSM+-up). In low Mach numbers, a pressure correction equation of elliptic type is derived. This equation is compatible with the nature of governing equations and retrieves hyperbolic characteristic at higher Mach numbers. It is shown that the proposed numerical algorithm is computationally more efficient than the preconditioned density-based methods. The flow parameters such as reattachment length, pressure loss coefficient and wall shear stress are predicted. It is found that the loss coefficient of the compressible flow rises drastically with... 

    Inverse design of 2-D subsonic ducts using flexible string algorithm

    , Article Inverse Problems in Science and Engineering ; Volume 17, Issue 8 , 2009 , Pages 1037-1057 ; 17415977 (ISSN) Nili Ahmadabadi, M ; Dural, M ; Hajilouy Benisi, A ; Ghadak, F ; Sharif University of Technology
    Abstract
    The duct inverse design in fluid flow problems usually involves finding the wall shape associated with a prescribed distribution of wall pressure or velocity. In this investigation, an iterative inverse design method for 2-D subsonic ducts is presented. In the proposed method, the duct walls shape is changed under a novel algorithm based on the deformation of a virtual flexible string in flow. The deformation of the string due to the local flow conditions resulting from changes in wall geometry is observed until the target shape satisfying the prescribed wall's pressure distribution is reached. The flow field at each step is analysed using Euler equations and the advection upstream splitting...