Loading...
Search for: high-throughput
0.007 seconds
Total 46 records

    High-throughput low-complexity unified multipliers over GF(2m) in dual and triangular bases

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume PP, Issue 99 , 2016 ; 15498328 (ISSN) Salarifard, R ; Bayat Sarmadi, S ; Farmani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    Multiplication is an essential operation in cryptographic computations. One of the important finite fields for such computations is the binary extension field. High-throughput low-complexity multiplication architectures lead to more efficient cryptosystems. In this paper, a high-throughput low-complexity unified multiplier for triangular and dual bases is presented, and is referred to as basic architecture. This multiplier enjoys slightly simpler and more regular structure due to use of the mentioned bases. Additionally, structurally improved architectures have been proposed, which have smaller time complexity than basic ones. This is achieved by the use of parallel processing method.... 

    Quantifying the difference in resource demand among classic and modern NoC workloads

    , Article Proceedings of the 34th IEEE International Conference on Computer Design, ICCD 2016, 2 October 2016 through 5 October 2016 ; 2016 , Pages 404-407 ; 9781509051427 (ISBN) Mirhosseini, A ; Sadrosadati, M ; Zare, M ; Sarbazi Azad, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper quantifies the difference in resource demand between modern and classic NoC workloads. In the paper, we show that modern workloads are able to better utilize higher numbers of VCs and smaller C factors in order to attain performance and energy efficiency. This is because of the high throughput and possible local congestions in their traffic pattern. As a result, such workloads are more suitable for concurrency and redundancy energy reduction techniques where the voltage and frequency are reduced simultaneously and the increased power budget is used for introducing additional resources to the network in order to improve the performance  

    High throughput solution exchange of microparticles using magnetophoresis in curved microchannels

    , Article 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2017, 22 October 2017 through 26 October 2017 ; 2020 , Pages 1324-1325 Bayat, P ; Zareian, S ; Rezai, P ; The Chemical and Biological Microsystems Society (CBMS) ; Sharif University of Technology
    Chemical and Biological Microsystems Society  2020
    Abstract
    A novel method involving focusing of magnetic particles at the inner wall of a curved microchannel and secondary Dean flow-based exchange of their fluid was investigated. Solution exchange occurred in a hybrid microchip at very high throughput and with unprecedented solution exchange and particle isolation efficiencies of 99.2% and 90%, respectively. © 17CBMS-0001  

    A high-throughput approach for the determination of pesticide residues in cucumber samples using solid-phase microextraction on 96-well plate

    , Article Analytica Chimica Acta ; Volume 740 , 2012 , Pages 36-42 ; 00032670 (ISSN) Bagheri, H ; Es'haghi, A ; Eshaghi, A ; Mesbahi, N ; Sharif University of Technology
    Abstract
    A high-throughput solid-phase microextraction (SPME) on 96-well plate together with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of some selected pesticides in cucumber samples. Pieces with the length of 1.0cm of silicon tubing were precisely prepared and then coated on the end part of stainless steel wires. The prepared fibers were positioned in a home-made polytetrafluoroethylene (PTFE)-based constructed ninety-six holes block to have the possibility of simultaneous immersion of the SPME fibers into the center of individual wells. Pesticides such as diazinon, penconazol, tebuconazol, bitertanol, malathion, phosalone and chlorpyrifos-methyl were selected... 

    Quantification of in Vitro Drug Effects on COVID-19 through Analysis of Cellular Morphological Features

    , M.Sc. Thesis Sharif University of Technology Mirzaie, Nahal (Author) ; Rohban, Mohammad Hossein (Supervisor) ; Sharifi Zarchi, Ali (Supervisor)
    Abstract
    The epidemic of Covid 19 has killed millions of people worldwide. Despite the efforts of scientists around the world, there is still no cure for this disease. Approval of newly designed drugs due to clinical trial periods is time-consuming and costly. For this reason, in the current emergency situation, it is important to have a solution for screening available approved drugs in order to find effective substances for this disease.High-throughput assays are a good option for such problems. In this field of research, image-based high-throughput assays are amongst the most effective and cost-effective methods that help quantify the response of treated cells by measuring cell... 

    High throughput blood plasma separation using a passive PMMA microfluidic device

    , Article Microsystem Technologies ; 2015 ; 09467076 (ISSN) Shamsi, A ; Shamloo, A ; Mohammadaliha, N ; Hajghassem, H ; Mehrabadi, J. F ; Bazzaz, M ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation... 

    High-throughput low-complexity systolic montgomery multiplication over GF(2m) Based on Trinomials

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Volume 62, Issue 4 , January , 2015 , Pages 377-381 ; 15497747 (ISSN) Bayat Sarmadi, S ; Farmani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Cryptographic computation exploits finite field arithmetic and, in particular, multiplication. Lightweight and fast implementations of such arithmetic are necessary for many sensitive applications. This brief proposed a low-complexity systolic Montgomery multiplication over GF(2m). Our complexity analysis shows that the area complexity of the proposed architecture is reduced compared with the previous work. This has also been confirmed through our application-specific integrated circuit area and time equivalent estimations and implementations. Hence, the proposed architecture appears to be very well suited for high-throughput low-complexity cryptographic applications  

    High-throughput stream categorization and intrusion detection on GPU

    , Article 8th ACM/IEEE International Conference on Formal Methods and Models for Codesign, MEMOCODE 2010, 26 July 2010 through 28 July 2010 ; August , 2010 , Pages 81-84 ; 9781424478859 (ISBN) Khabbazian, M. H ; Eslamiy, H ; Totoniy, E ; Khademy, A ; Sharif University of Technology
    Abstract
    We present a design and implementation of a high-throughput deep packet inspection performing both stream categorization and intrusion detection on GPU platform using CUDA. This implementation is capable of matching 64 ethernet packet streams against 25 given regular expressions at 524 Mb/s rate on a computer system with GeForce GTX 295 graphic card  

    High throughput blood plasma separation using a passive PMMA microfluidic device

    , Article Microsystem Technologies ; Volume 22, Issue 10 , 2016 , Pages 2447-2454 ; 09467076 (ISSN) Shamsi, A ; Shamloo, A ; Mohammadaliha, N ; Hajghassem, H ; Fallah Mehrabadi, J ; Bazzaz, M ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation... 

    Joint sum rate and error probability optimization: finite blocklength analysis

    , Article IEEE Wireless Communications Letters ; 2017 ; 21622337 (ISSN) Haghifam, M ; Mili, M. R ; Makki, B ; Nasiri Kenari, M ; Svensson, T ; Sharif University of Technology
    Abstract
    We study the tradeoff between the sum rate and the error probability in downlink of wireless networks. Using the recent results on the achievable rates of finite-length codewords, the problem is cast as a joint optimization of the network sum rate and the per-user error probability. Moreover, we develop an efficient algorithm based on the divide-and-conquer technique to simultaneously maximize the network sum rate and minimize the maximum users’ error probability and to evaluate the effect of the codeword length on the system performance. The results show that, in delay-constrained scenarios, optimizing the per-user error probability plays a key role in achieving high throughput. IEEE  

    Graph traversal edit distance and extensions

    , Article Journal of Computational Biology ; Volume 27, Issue 3 , 2020 , Pages 317-329 Ebrahimpour Boroojeny, A ; Shrestha, A ; Sharifi Zarchi, A ; Gallagher, S. R ; Sahinalp, S. C ; Chitsaz, H ; Sharif University of Technology
    Mary Ann Liebert Inc  2020
    Abstract
    Many problems in applied machine learning deal with graphs (also called networks), including social networks, security, web data mining, protein function prediction, and genome informatics. The kernel paradigm beautifully decouples the learning algorithm from the underlying geometric space, which renders graph kernels important for the aforementioned applications. In this article, we give a new graph kernel, which we call graph traversal edit distance (GTED). We introduce the GTED problem and give the first polynomial time algorithm for it. Informally, the GTED is the minimum edit distance between two strings formed by the edge labels of respective Eulerian traversals of the two graphs.... 

    DotGrid: A .NET-based cross-platform grid computing infrastructure

    , Article 2006 International Conference on Computing and Informatics, ICOCI '06, Kuala Lumpur, 6 June 2006 through 8 June 2006 ; 2006 ; 1424402204 (ISBN); 9781424402205 (ISBN) Haj Abutalebi, A ; Poshtkuhi, A ; Ayough, L. M ; Hessabi, S ; Sharif University of Technology
    2006
    Abstract
    Recently, Grid infrastructures have provided wide integrated use of resources. DotGrid intends to introduce required Grid services and toolkits that are implemented as a layer wrapped over the existing operating systems. Our DotGrid has been developed based on Microsoft .NET in Windows and MONO .NET in Linux and UNIX. Using DotGrid APls, Grid middlewares and applications can be implemented easily. We evaluated DotGrid capabilities by implementing some applications including a high throughput file transfer and solving a typical computational problem. ©2006 IEEE  

    High-throughput, label-free isolation of white blood cells from whole blood using parallel spiral microchannels with u-shaped cross-section

    , Article Biosensors ; Volume 11, Issue 11 , 2021 ; 20796374 (ISSN) Mehran, A ; Rostami, P ; Saidi, M. S ; Firoozabadi, B ; Kashaninejad, N ; Sharif University of Technology
    MDPI  2021
    Abstract
    Rapid isolation of white blood cells (WBCs) from whole blood is an essential part of any WBC examination platform. However, most conventional cell separation techniques are labor-intensive and low throughput, require large volumes of samples, need extensive cell manipulation, and have low purity. To address these challenges, we report the design and fabrication of a passive, label-free microfluidic device with a unique U-shaped cross-section to separate WBCs from whole blood using hydrodynamic forces that exist in a microchannel with curvilinear geometry. It is shown that the spiral microchannel with a U-shaped cross-section concentrates larger blood cells (e.g., WBCs) in the inner... 

    Meta-aligner: long-read alignment based on genome statistics

    , Article BMC Bioinformatics ; Volume 18, Issue 1 , 2017 ; 14712105 (ISSN) Nashta Ali, D ; Aliyari, A ; Ahmadian Moghadam, A ; Edrisi, M. A ; Motahari, S. A ; Khalaj, B. H ; Sharif University of Technology
    Abstract
    Background: Current development of sequencing technologies is towards generating longer and noisier reads. Evidently, accurate alignment of these reads play an important role in any downstream analysis. Similarly, reducing the overall cost of sequencing is related to the time consumption of the aligner. The tradeoff between accuracy and speed is the main challenge in designing long read aligners. Results: We propose Meta-aligner which aligns long and very long reads to the reference genome very efficiently and accurately. Meta-aligner incorporates available short/long aligners as subcomponents and uses statistics from the reference genome to increase the performance. Meta-aligner estimates... 

    SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks

    , Article BMC Bioinformatics ; Volume 22, Issue 1 , 2021 ; 14712105 (ISSN) Akbarinejad, S ; Hadadian Nejad Yousefi, M ; Goudarzi, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. Results: In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads... 

    SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks

    , Article BMC Bioinformatics ; Volume 22, Issue 1 , 2021 ; 14712105 (ISSN) Akbarinejad, S ; Hadadian Nejad Yousefi, M ; Goudarzi, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. Results: In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads... 

    High-Throughput Determination of Pesticide Residues by Solid-Phase Microextraction and Micro-Solid Phase Extraction on 96-Well Plate

    , Ph.D. Dissertation Sharif University of Technology Eshaghi, Ali (Author) ; Bagheri, Habib (Supervisor) ; Es-haghi, Ali ($item.subfieldsMap.e)
    Abstract
    Novel high-throughput device and their applications as the microextraction systems for pesticide multiresidue determination is the centre of this research. 96 extracting unit based on solid phase microextraction and micro-Solid phase extraction were constructed and applied for high-throughput extraction.
    In the first work, a high-throughput SPME on 96-well plate together with gas chromatography-mass spectrometry was developed for the determination of pesticide residues in cucumber samples. A home-made Teflon block consisting ninety-six holes was constructed to 96 SPME fibers being positioned in. SPME fibers consisted of stainless steel rods with a 1.0 cm polydimethylsiloxane tubing... 

    Numerical Investigation of Droplet Generation in a Microfluidic Flow-Focusing Junction Aiming High-Throughput Droplet Generation

    , M.Sc. Thesis Sharif University of Technology Mardani Boldaji, Fatemeh (Author) ; Taghipoor, Mojtaba (Supervisor) ; Hosseini, Vahid (Supervisor)
    Abstract
    Droplet microfluidic platform generates monodisperse droplets in a desired size through immiscible multiphase flows inside microchannels. Droplets are individual reactor and can be used for bio(chemical) analyses. Also, for materials fabrication, droplet microfluidics offers a versatile platform for generation of nano- or micro-sized particles and microcapsules that are widely used in drug delivery. In addition to the monodispersity, high-throughput generation is also necessary in many applications. Therefore, droplets must be formed in stable regimes (dripping and squeezing) in the highest possible frequency. In this study, the flow-focusing geometry, which is the most common geometry in... 

    Ultra high-throughput architectures for hard-output MIMO detectors in the complex domain

    , Article Midwest Symposium on Circuits and Systems, 7 August 2011 through 10 August 2011l ; August , 2011 ; 15483746 (ISSN) ; 9781612848570 (ISBN) Mahdavi, M ; Shabany, M ; Sharif University of Technology
    2011
    Abstract
    In this paper, a novel hard-output detection algorithm for the complex multiple-input multiple-output (MIMO) detectors is proposed, which results in a significant throughput enhancement, a near-ML performance, and an SNR-independent fixed-throughput. Moreover, a high-throughput VLSI implementation is proposed, which is based on a novel method of the node generation and sorting scheme. The proposed design achieves the throughput of 10Gbps in a 0.13 μ CMOS process, which is the highest throughput reported in the literature for both the real and the complex domains. Synthesis results in 90nm CMOS also show that the proposed scheme can achieve the throughput of up to 15Gbps. Moreover, the FPGA... 

    VLSI implementation of a WiMAX/LTE compliant low-complexity high-throughput soft-output K-best MIMO detector

    , Article ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, 30 May 2010 through 2 June 2010, Paris ; 2010 , Pages 593-596 ; 9781424453085 (ISBN) Patel, D ; Smolyakov, V ; Shabany, M ; Gulak, P. G ; Sharif University of Technology
    2010
    Abstract
    This paper presents a VLSI architecture of a novel softoutput K-Best MIMO detector. The proposed detector attains low computational complexity using three improvement ideas: relevant discarded paths selection, last stage on-demand expansion, and relaxed LLR computation. A deeply pipelined architecture for a soft-output MIMO detector is implemented for a 4x4 64-QAM MIMO system realizing a peak throughput of 655Mbps, while consuming 174K gates and 195mW in 0.13um CMOS. Synthesis results in 65nm CMOS show the potential to support a sustained throughput up to 2Gbps achieving the data rates envisioned by emerging IEEE 802.16m and LTE-Advanced wireless standards