Loading...
Search for: dna
0.006 seconds
Total 173 records

    Synthesis, crystal structure and DNA interaction of a new water-soluble derivative of pyrazino[2,3-f][1,10] phenanthroline; theoretical calculations, experimental and molecular docking studies

    , Article Journal of Molecular Structure ; Volume 1165 , 2018 , Pages 267-275 ; 00222860 (ISSN) Aminzadeh, M ; Eslami, A ; Kia, R ; Aleeshah, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The new water-soluble derivative of pyrazino[2,3-f][1,10] phenanthroline has been synthesized and characterized by conductivity measurement, elemental analysis, FT-IR, 1H NMR, 13C NMR spectroscopic studies, as well as single crystal x-ray crystallography. Theoretical calculations have been performed using the density functional theory (DFT) in order to confirm the structure and understand the electronic structure of the synthesized compound. The DNA binding properties of the compound were investigated by absorption spectroscopy, melting temperature and viscosity measurements. The intrinsic binding constant, Kb, was determined as 7.84 × 103 M−1 at 298 K. Thermodynamic parameters showed that... 

    Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing

    , Article Sensors and Actuators, B: Chemical ; Volume 266 , 2018 , Pages 160-169 ; 09254005 (ISSN) Shahrokhian, S ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Breast Cancer (BRCA) is the most common threat in women worldwide. Increasing death rate of diagnosed cases is the main leading cause of designing specific genosensors for BRCA − related cancer detection. In the present study, an ultrasensitive label − free electrochemical DNA (E − DNA) sensor based on conducting polymer/reduced graphene − oxide platform has been developed for the detection of BRCA1 gene. An electrochemical method was applied as a simple and controllable technique for the electrochemical reduction of graphene oxide and also, electro − polymerization of pyrrole − 3 − carboxylic acid monomer. The results of the present work show that the polymer − coated reduced graphene −... 

    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA detection based on tellurium doped ZnO nanowires

    , Article Applied Physics A: Materials Science and Processing ; Volume 125, Issue 9 , 2019 ; 09478396 (ISSN) Khosravi Nejad, F ; Teimouri, M ; Jafari Marandi, S ; Shariati, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA (HPV DNA) detection based on tellurium doped ZnO nanowires was fabricated. The NWs were grown by hybrid thin film oxidation in the physical vapor deposition (PVD) mechanism. The morphology characterization of the synthesized NWs was performed by field emission scanning electron microscopy (FESEM) and the images demonstrated that the diameter and the length of the materialized NWs were around 50 nm and several micrometers, respectively. The high-resolution transmission electron microscopy (HRTEM) image indicated that the fabricated NWs were crystalline and their phase characterization was validated by... 

    IMOS: improved meta-aligner and minimap2 on spark

    , Article BMC Bioinformatics ; Volume 20, Issue 1 , 2019 ; 14712105 (ISSN) Hadadian Nejad Yousefi, M ; Goudarzi, M ; Motahari, A ; Sharif University of Technology
    BioMed Central Ltd  2019
    Abstract
    Background: Long reads provide valuable information regarding the sequence composition of genomes. Long reads are usually very noisy which renders their alignments on the reference genome a daunting task. It may take days to process datasets enough to sequence a human genome on a single node. Hence, it is of primary importance to have an aligner which can operate on distributed clusters of computers with high performance in accuracy and speed. Results: In this paper, we presented IMOS, an aligner for mapping noisy long reads to the reference genome. It can be used on a single node as well as on distributed nodes. In its single-node mode, IMOS is an Improved version of Meta-aligner (IM)... 

    SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks

    , Article BMC Bioinformatics ; Volume 22, Issue 1 , 2021 ; 14712105 (ISSN) Akbarinejad, S ; Hadadian Nejad Yousefi, M ; Goudarzi, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. Results: In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads... 

    SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks

    , Article BMC Bioinformatics ; Volume 22, Issue 1 , 2021 ; 14712105 (ISSN) Akbarinejad, S ; Hadadian Nejad Yousefi, M ; Goudarzi, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. Results: In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads... 

    Dna-Rna hybrid (R-loop): From a unified picture of the mammalian telomere to the genome-wide profile

    , Article Cells ; Volume 10, Issue 6 , 2021 ; 20734409 (ISSN) Rassoulzadegan, M ; Sharifi Zarchi, A ; Kianmehr, L ; Sharif University of Technology
    MDPI  2021
    Abstract
    Local three-stranded DNA/RNA hybrid regions of genomes (R-loops) have been detected either by binding of a monoclonal antibody (DRIP assay) or by enzymatic recognition by RNaseH. Such a structure has been postulated for mouse and human telomeres, clearly suggested by the identification of the complementary RNA Telomeric repeat-containing RNA “TERRA”. However, the tremendous disparity in the information obtained with antibody-based technology drove us to investigate a new strategy. Based on the observation that DNA/RNA hybrids in a triplex complex genome co-purify with the double-stranded chromosomal DNA fraction, we developed a direct preparative approach from total protein-free cellular... 

    The effect of energy spectrum change on DNA damage in and out of field in 10-MV clinical photon beams

    , Article Medical and Biological Engineering and Computing ; Volume 53, Issue 1 , January , 2015 , Pages 67-75 ; 01400118 (ISSN) Ezzati, A. O ; Xiao, Y ; Sohrabpour, M ; Studenski, M. T ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    The aim of this study was to quantify the DNA damage induced in a clinical megavoltage photon beam at various depths in and out of the field. MCNPX was used to simulate 10 × 10 and 20 × 20 cm2 10-MV photon beams from a clinical linear accelerator. Photon and electron spectra were collected in a water phantom at depths of 2.5, 12.5 and 22.5 cm on the central axis and at off-axis points out to 10 cm. These spectra were used as an input to a validated microdosimetric Monte Carlo code, MCDS, to calculate the RBE of induced DSB in DNA at points in and out of the primary radiation field at three depths. There was an observable difference in the energy spectra for photons and electrons for points... 

    Graphene oxide negatively regulates cell cycle in embryonic fibroblast cells

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 6201-6209 Hashemi, E ; Akhavan, O ; Shamsara, M ; Ansari Majd, S ; Sanati, M. H ; Daliri Joupari, M ; Farmany, A ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Unique properties of graphene and its derivatives make them attractive in the field of nanomedicine. However, the mass application of graphene might lead to side effects, which has not been properly addressed in previous studies, especially with regard to its effect on the cell cycle. Methods: The effect of two concentrations (100 and 200 μg/mL) of nano-and microsized graphene oxide (nGO and mGO) on apoptosis, cell cycle, and ROS generation was studied. The effect of both sizes on viability and genotoxicity of the embryonic fibroblast cell cycle was evaluated. MTT and flow cytometry were applied to evaluate the effects of graphene oxide (GO) nanosheets on viability of cells.... 

    Stability Analysis of Hybrid Nanotubes Based on the Nonlocal Continuum Theories

    , M.Sc. Thesis Sharif University of Technology Rafati Heravi, Jacob (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Strong van der Waals (vdW) potential fields of carbon nanotubes (CNTs) makes them capable to encapsulate some nanostructures inside their hollow space, which leads to the construction of new hybrid nanostructures under specific conditions. Carbon nano-peapods, carbon nanowires and the hybrid of DNA and CNT are the main categories of hybrid nanostructures of CNT. Characteristics of hybrid nanotubes are unique and different from those of CNT. In nanostructures, the lattice spacing between individual atoms is considerable with respect to the structural dimensions. Also, the range of internal characteristic length is relatively close to external ones. So that utilizing the classical continuum... 

    Design, Simulation and Fabrication of Integrated Centrifugal Microfluidic Platform for Separation and Lysis of Circulating Tumor Cells

    , M.Sc. Thesis Sharif University of Technology Momeni, Maede (Author) ; Shamloo, Amir (Supervisor) ; Firoozbakhsh, Keykhosrow (Supervisor)
    Abstract
    Cancer diagnosis area has recently been in the limelight of the medical research and there exist an unremitting focus on the devices & technologies which enable cancer detection in its victims. Lately a genius diagnostic method based on isolation and entrapment of circulating tumor cells has been developed which pave the path for cancer identification. These circulating cells which are detached from the primary tumor are carried out through body by means of circulation system. They play key role in phenomenon called metastasis. Separating these rare cells from multifarious background blood cells, assessing their quantity can supply valuable information on the stage of disease as well as its... 

    Investigation of I the Stability of B-DNA Molecule: A Molecular Dynamics Simulation

    , Ph.D. Dissertation Sharif University of Technology Izanloo, Cobra (Author) ; Parsafar, Gholam Abbas (Supervisor)
    Abstract
    In this thesis, the molecular dynamics simulation is used to investigate the melting transition of B-DNA molecule, via of configurational entropy, the fraction of broken hydrogen bonds (f-curve) and hydrogen bonding energy.We have performed molecular dynamics simulation on Drew-Dickerson oligomer with sequence of (CGCGAATTGCGC) at different temperatures, within the range of 280-400 K with the 20 K intervals. The simulation was done in two different mediums (pure water and 1 M NaCl), to see influences of water and salt in stabilizing the DNA molecule. At each temperature, configurational entropy is calculated by the Schlitter’s formula, using the Cartesian coordinate of all atoms. So, in each... 

    Exact Simulation of Varian Clinac 2100C/D with Use of Phase Space file and Representation of Appropriate Source Model for Clinical Applications

    , Ph.D. Dissertation Sharif University of Technology Ezzati, Ahadollah (Author) ; Sohrabpour, Mostafa (Supervisor) ; Rabi Mahdavi, Saeed (Co-Advisor)
    Abstract
    MC Simulation is considered to be one of the most accurate methods for transport of radiation in various media. Computational speed is the limiting factor to apply the MC method in clinical settings. One of the methods to increase the speed in MC simulations is the use of phase space file (PSF). PSF is generated by transporting the particles through the linear accelerator head. The characteristics of these particles crossing a reference plane are stored in the PSF file. The PSF can be used in subsequent simulations as a radiation source. The use of PSF is effective but has a drawback of having latent variance. Latent variance is a problem inherent in using phase space files. Latent variance... 

    Design & Analysis of a DNA String Matching System Based on Optical Parallel Processing

    , M.Sc. Thesis Sharif University of Technology Babashah, Hossein (Author) ; Kavehvash, Zahra (Supervisor) ; Koohi, Somaie (Co-Advisor) ; Khavasi, Amin (Co-Advisor)
    Abstract
    In recent years, the biological evolution of molecular detection capabilities based on gene analysis has provided a reliable performance in the diagnosis of a disease before a symptom emerges. Human gene storage requires a large amount of computer memory (about 1.5 GB for each DNA) and the search for a specific pattern within it with electronic computers is time and power consuming. Optical computing uses light parallel processing capabilities to find the pattern in a digital field, which can be used to process large volumes of data in short time and low power consumption, while electronic computers process data in series with high power dissipation. According to the Optalysys report, the... 

    A Study of Quantum Information Transfer from DNA to Protein

    , M.Sc. Thesis Sharif University of Technology Esalat, Asiyeh (Author) ; Shafiee, Afshin (Supervisor)
    Abstract
    New biological discussions in quantum mechanics that has grown considerably in the past decade. Meanwhile, considering some of interesting problems in biology and chemistry, the use of quantum approach superposition principle and tunneling effect explain some of the phenomena of life more than several. Nowadays, regarding quantum description, provided to explain how we recognize different odors, what the mechanism photosynthesis is, and how bind navigation occurs. Furthermore, the new field of quantum biology sheds light in underestanding the issue of heritance and genetics inforamtion. In this thesis, after reviewing some interesting topics of quantum biology, the data transfer from... 

    Equilibrium States of Nano scaled DNA-loops in Different Elastic Models

    , M.Sc. Thesis Sharif University of Technology Salari, Hossein (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    DNA cyclization mechanism, has an important role in many biological processes such as gene regulation, DNA replication and recombination. In addition there are DNA-loops in Bacteria an around the Histones in Chromosomes in scale of 5-100 nm. We need to a appropriate model to study about bending and loop formationin in this important molecule which is able to describe elasticity properties of DNA.One of the most successful models, to describe the physical behaviour of a long DNA molecule, is the elastic rod model. In this model, DNA is considered as a  ixable rod that its bending energy is isotropic. Asymmetric elastic rod model is another model to describe elasticity properties of DNA.... 

    Design, Simulation and Construction of a Rapid Gene Amplification Microfluidic Device Using Polymerase Chain Reaction (PCR) Method

    , M.Sc. Thesis Sharif University of Technology Amadeh, Ali (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Polymerase chain reaction method is a conventional method for obtaining multiple copies of a specified segment in the DNA molecule and to amplify the DNA molecule itself. Therefore, this method has been of paramount importance in different fields of research and has been applied for different applications. PCR requires thermal cycling, or repeated temperature changes between two or three discrete temperatures to amplify specific nucleic acid target sequences. To achieve such thermal cycling, conventional bench-top thermal cyclers generally use a metal heating block powered by Peltier elements or benefit from forced convection heat transfer. Although efforts have been made in order to reduce... 

    Design of a Microfluidic Digital Droplet PCR

    , M.Sc. Thesis Sharif University of Technology Abedini, Ali (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Polymerase chain reaction, abbreviated as PCR, is a method of amplifying the number of copies of a desired DNA sequence through special protocols. The rapid advance of microfluidic devices and the emerging concept of digital microfluidics has resulted into the development of digital droplet PCR (ddPCR) systems with their significant uses in the detection of rare mutations, cancer diagnosis, and surveillance. A large number of micron-sized droplets are required to perform ddPCR. in this study, To investigate the gradient of confinements induced droplet self-breakup mechanism, we carried out the computational fluid dynamics (CFD) simulations for the two-phase flow using a commercial software... 

    Multi- and Single-cellular Encapsulation within Microchannels for Effective Cell Lysis and DNA Extraction and Purification

    , M.Sc. Thesis Sharif University of Technology Hassani Gangaraj, Mojtaba (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    In this study a droplet-based microfluidic system is desighned and fabricated to effectiverly lyse MCF7 cells and extract and purify their DNAs. The main purpose of this study is to transfer all the steps from macro scale to a microfluidic system containing a fluidic chip. This system is a semi automatic system and every part of the lysis and purification process is performed in one step. The first step is to encapsulate single cells and multi cells inside the droplets. By controlling the concentration of the cell solution, the number of encapsulated cells inside the droplet is efficiently and easily controlled and the cells were encapsulated as single cells and as multi cells inside the... 

    Study, Optimization and Construction of a Microfluidic Gene Amplification Device by Using Thin Film Layer Method

    , M.Sc. Thesis Sharif University of Technology Eslami, Sara Sadat (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Co-Supervisor) ; Shamloo, Amir (Co-Supervisor)
    Abstract
    Polymerase Chain Reaction (PCR) is a process in which a special piece of a gene is amplified millions of times over a short period. This method has been of paramount importance in different fields of research and has been applied for different applications. PCR requires thermal cycling, or repeated temperature changes between two or three discrete temperatures to amplify specific nucleic acid target sequences. To achieve such thermal cycling, conventional bench-top thermal cyclers generally use a metal heating block powered by Peltier elements or benefit from forced convection heat transfer. Due to the fact that these methods are time consuming, it seems that design and fabrication of a fast...