Loading...
Search for: nucleation
0.008 seconds
Total 116 records

    Grain refinement of AA5754 aluminum alloy by ultrasonic cavitation: Experimental study and numerical simulation

    , Article Metals and Materials International ; Volume 21, Issue 1 , 2015 , Pages 109-117 ; 15989623 (ISSN) Haghayeghi, R ; Ezzatneshan, E ; Bahai, H ; Sharif University of Technology
    Korean Institute of Metals and Materials  2015
    Abstract
    In this work, an experimental investigation was carried out on the grain refinement of molten AA5754 Aluminum alloy through ultrasonic treatment. The cavitation induced heterogeneous nucleation was suggested as the major mechanism for grain refinement in the AA5754 aluminum alloy. A numerical simulation was performed to predict the formation, growth and collapse of cavitation bubbles in the molten AA5754 Aluminum alloy. Moreover, the acoustic pressure distribution and the induced acoustic streaming by ultrasonic horn reactor were investigated. It is suggested that the streaming by ultrasonic could transport the small bubbles formed in the ultrasonic cavitation zone into the bulk of melt... 

    Electrochemical behavior of nanostructured fe-pd alloy during electrodeposition on different substrates

    , Article Journal of Electrochemical Science and Technology ; Volume 9, Issue 3 , 2018 , Pages 202-211 ; 20938551 (ISSN) Rezaei, M ; Haghshenas, D. F ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Korean Electrochemical Society  2018
    Abstract
    In this work, Fe-Pd alloy films have been electrodeposited on different substrates using an electrolyte containing [Pd(NH3)4]2+ (0.02 M) and [Fe-Citrate]2+ (0.2 M). The influences of substrate and overpotential on chemical composition, nucleation and growth kinetics as well as the electrodeposited films morphology have been investigated using energy dis-persive X-ray spectroscopy (EDS), current-time transients, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) patterns. In all substrates – brass, copper and sputtered fluorine doped tin oxide on glass (FTO/glass) – Fe content of the electrodeposited alloys increases by increasing the overpotential.... 

    A comprehensive empirical correlation for prediction of supersolubility and width of the metastable zone in crystallization

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 22, Issue 2 , 2003 , Pages 23-34 ; 10219986 (ISSN) Naser, I ; Manteghian, M ; Bastani, D ; Mohammadzadeh, M ; Sharif University of Technology
    2003
    Abstract
    Prediction of supersolubility and the width of the metastable zone has been a major concern among the workers in the field of industrial crystallization. Operation of crystallizers under the optimum supersaturation low enough to attain the desired product quality (Median Particle Size, Crystal Size Distribution (CSD), Shape, Purity) being one motif. The inherent relationship between the subject and the most fundamental concepts of crystallization being the other. Studying the conditions of primary homogenous nucleation and the crystal growth kinetics has been conducted for a wide range of inorganic materials. A simple probabilistic term called chance of having the desirable species... 

    Microstructural changes during static recrystallization of austenitic stainless steel 304l: cellular automata simulation

    , Article Metallography, Microstructure, and Analysis ; Volume 9, Issue 2 , 2020 , Pages 223-238 Alavi, P ; Serajzadeh, S ; Sharif University of Technology
    Springer  2020
    Abstract
    Static recrystallization and microstructural changes in austenitic stainless steel 304L were studied. The rolling experiments at 200 °C were carried out, and then, annealing treatment was made at temperatures ranging between 500 and 830 °C. A model was also developed to simulate the kinetics of non-isothermal recrystallization within the rolled steel. The distribution of plastic strains during rolling was predicted utilizing an elastic–plastic finite element formulation performed in ABAQUS/Explicit, while the predicted results were used to generate the as-rolled microstructure and to estimate the stored energy. Finally, microstructural–thermal model based on cellular automata was developed... 

    Using nucleators to control freckles in unidirectional solidification

    , Article Experimental Thermal and Fluid Science ; Volume 33, Issue 8 , 2009 , Pages 1209-1215 ; 08941777 (ISSN) Shafii, M. B ; Alavi Dehkordi, E ; Esmaily Moghadam, M ; Mohseni Koochesfahani, M ; Sharif University of Technology
    2009
    Abstract
    Buoyancy-induced fluid flow, which is responsible for most forms of macro-segregation and channel-type segregates in castings, is not directly controllable. If left uncontrolled, natural convection will contribute to non-uniform distribution of alloy constituents and grain structure during solidification of a casting. Non-uniform distribution of chemical composition and physical structure in an alloy casting can significantly affect the reliability of mechanical components. Therefore, materials with acceptable defects can be produced only by trial-and-error and their acceptability is determined by costly inspections. We present a novel technique to control the formation of chimneys and... 

    An electrochemical study of Au-Ni alloy electrodeposition from cyanide-citrate electrolytes

    , Article Journal of Electroanalytical Chemistry ; Volume 577, Issue 1 , 2005 , Pages 1-8 ; 15726657 (ISSN) Dolati, A ; Ghorbani, M ; Ahmadi, M. R ; Sharif University of Technology
    Elsevier  2005
    Abstract
    Cyclic voltammetry, j-t transients and transient time measurements have been used to characterize the Au-Ni alloy deposition and to obtain the nucleation and growth mechanism. The electrodeposition of gold, nickel and gold-nickel alloys was studied in cyanide-citrate electrolytes. The analysis of the voltammograms and j-t transients clearly shows that deposition of the Au and hence, of Au-Ni alloys, is affected by adsorbed cyanide ligands mainly at low overpotentials and a direct reduction occurs at high overpotentials. In this case, the Au deposition is kinetically favored, while the Ni deposition is controlled by the cyanide-citrate adsorbed adlayer. In an alloy electrolyte, the Au and Ni... 

    A Comparative Study of the Redox Processes of Iodide Ion on Pt, C and Carbon-Polyorthoaminophenol

    , M.Sc. Thesis Sharif University of Technology Safar Kolachaee, Leila (Author) ; Gobal, Feridon (Supervisor)
    Abstract
    In this study a systematic effort was made to study and compare electrochemical oxidation behavior of iodide on Pt, carbon and carbon supported polyorthoaminophenol film electrodes. All of the electrochemical experiments were performed in acidic, basic and nuteral aqueous solutions and the applied electrochemical techniques included Chronoamperometry (CA) and Cyclic voltammetry (CV). Effects of concentration and scan rate of potential on the cyclic voltammetry of KI was studied at the previously mentioned electrodes. Current-time and log current-potential curves were analyezed quantitavely in order to determine kinetic parameters. Carbon supported polyorthoaminophenol electrode was prepared... 

    Study on Nucleation and Growth of Titanium Dioxide Nano Particles via Gel-Sol Method

    , M.Sc. Thesis Sharif University of Technology Shahini, Sharif (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Nanotechnology is an efficient method suitable for fabrication and production of minimal single dimensional nanometric structures. Such materials and systems can be logically designed that lead to new and optimized biological, chemical and physical properties and characteristics due to their size. Nucleation and growth –appearance of a new phase out of an old phase – is a ubiquitous phenomenon in nature. Fundamental understanding of nanoparticles nucleation and growth mechanism allows more control on form, size and composition and allows tuning of the above said properties easily with use of different reactive conditions as a result of this ability . Nanoparticles of titania are one of... 

    Effect of carbon nanotube incorporation in polyvinyl alcohol on structure and morphology of derived electrospun carbon nanofibers in presence of iodine and cadmium salt

    , Article Materials Chemistry and Physics ; April , 2014 ; SSN: 02540584 Azami Ghadikolaei, M ; Faghihi-Sani, M. A ; Shabani, K ; Baniasadi, A ; Sharif University of Technology
    Abstract
    This research focused on fabrication of various carbon nanofibers (CNFs) from electrospun Polyvinyl alcohol (PVA) by utilization of iodine (I2) and cadmium acetate dihydrate (Cd) as stabilizers. Moreover, the influence of carbon nanotube (CNT) incorporation on structure and morphology of CNFs was investigated. In this regard, PVA and PVA-Cd solutions were individually prepared and electrospun. The resulting nanofibers were treated in I2 vapor and then carbonized. In the case of CNT incorporation, oxidized CNTs were first scattered in PVA and PVA-Cd solutions and then electrospun, iodinated and carbonized in the same conditions as mentioned above. It was found that the I2, Cd and their... 

    A kinetic study on the electrodeposition of nickel nanostructure and its electrocatalytic activity for hydrogen evolution reaction

    , Article Journal of Applied Electrochemistry ; Volume 40, Issue 11 , November , 2010 , Pages 1941-1947 ; 0021891X (ISSN) Torabi, M ; Dolati, A ; Sharif University of Technology
    2010
    Abstract
    The electrodeposition of nickel was studied using electrochemical techniques in different electrolytes and various agents. The voltammetry analysis clearly showed that the electrodeposition of nickel was a diffusion-controlled process associated with a typical nucleation process. The current transients represented instantaneous nucleation with a typical three-dimensional (3D) growth mechanism. Scharifker's equations were derived for instantaneous and progressive nucleation of the 3D growth of the spherical centers under diffusion-controlled condition. The number of nucleation sites increased with the increment in overpotential and Ni 2+ concentration. Atomic force microscopy was used to... 

    A study on the kinetics of gold nanowire electrodeposition in polycarbonate templates

    , Article Journal of Electroanalytical Chemistry ; Volume 645, Issue 1 , June , 2010 , Pages 28-34 ; 15726657 (ISSN) Soleimany, L ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2010
    Abstract
    Electrodeposition of gold nanowires is carried out in cyanide solution in polycarbonate templates with pore diameter of 80 nm. Electrochemical methods are utilized to characterize the gold electrodeposition and to obtain the nucleation and growth mechanism. The analysis of cyclic voltammograms shows that the electrodeposition of gold nanowires takes place under diffusion control. Current transients reveal that nucleation mechanism is instantaneous with a three-dimensional growth process. The transition-time measurements show that the gold elecrodeposition occurs as one-electron valence involved in the reaction mechanism. Charge transfer coefficient is also found to be 0.67 ± 0.01. The value... 

    A 3D continuum-kinetic monte carlo simulation study of early stages of nucleation and growth in ni electrodeposition

    , Article Electrochimica Acta ; Volume 236 , 2017 , Pages 1-9 ; 00134686 (ISSN) Zargarnezhad, H ; Dolati, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A 3D continuum code coupled with a kinetic Monte Carlo module has been developed for the simulation of Ni electrocrystallization in the initial stages of nucleation and growth. Mass transfer in solution was controlled by a finite-difference code which is distributed over an irregular nanoscale grid system in vertical direction to the substrate. Deposition events such as surface diffusion, chemisorption and crystallization in the system were considered in a KMC module that processes the output of a diffusion-controlled scheme in probability functions to model electrodeposition process on surface. Electrochemical data of this simulation was simultaneously generated according to analytical... 

    A kinetic study of facile fabrication of MIL-101(Cr) metal-organic framework: effect of synthetic method

    , Article Inorganica Chimica Acta ; Volume 471 , 2018 , Pages 513-520 ; 00201693 (ISSN) Pourebrahimi, S ; Kazemeini, M ; Sharif University of Technology
    Elsevier S.A  2018
    Abstract
    MIL-101(Cr) metal–organic framework samples were successfully synthesized through the conventional electrical heating (CE), ultrasound (US), and microwave (MW) synthetic methods at three different temperatures and various synthesis times. These were done with the aim of understudying the crystallization kinetics of these complex MIL's structures. The nucleation and crystal growth steps were thus, quantified through measuring the relative crystallinity of the prepared MIL-101(Cr) utilizing the PXRD and FESEM analysis under various synthesis conditions. In addition, the textural properties of the fully crystallized samples measured through the N2 adsorption–desorption isotherms at 77 K. The... 

    Influence of aluminide diffusion coating on low cycle fatigue properties of René 80

    , Article Materials Science and Engineering A ; Volume 486, Issue 1-2 , 2008 , Pages 686-695 ; 09215093 (ISSN) Rahmani, Kh ; Nategh, S ; Sharif University of Technology
    2008
    Abstract
    Low cycle fatigue is one of the most important phenomena affecting the lifetime of jet engine blades. In this paper, the effect of aluminide diffusion coating (CODEP-B) on low cycle fatigue properties of René 80 has been studied at temperature of 871 °C, R = 0 and strain rate of about 2 × 10-3 s-1. Experimental results show that the applied cyclic strain is lower than 0.8%, the presence of aforesaid coating increases the fatigue lifetime. In coated specimens, while the total cyclic strain is lower than 0.8%, the nucleation of the cracks occurs merely in substrate, but in cyclic strain more than 1%, as a result of simultaneous nucleation of cracks in the coating surface, diffusion layer and... 

    Electrohydrodynamically enhanced nucleation phenomenon: A theoretical study

    , Article Journal of Enhanced Heat Transfer ; Volume 15, Issue 1 , 2008 , Pages 1-15 ; 10655131 (ISSN) Moradian, A ; Saidi, M. H ; Sharif University of Technology
    2008
    Abstract
    Chaotic behavior of bubbles and their random motion because of the effects of an electric field (EF) motivates statistical approaches for investigating electrohydrodynamically (EHD) enhanced heat transfer. A theoretical model for boiling heat transfer under EHD is presented. The model is based on integral balance of momentum, energy, and interfacial area density, and consists of a system of three coupled equations: conservation of void fraction, bubble number density, and momentum of bubbles. Theoretical results are in qualitative agreement with the available experimental observations in the literature. © 2008 by Begell House, Inc  

    Effect of potential on the early stage of nucleation and growth during aluminum electrocrystallization from molten salt (AlCl3-NaCl-KCl)

    , Article Journal of Electroanalytical Chemistry ; Volume 588, Issue 2 , 2006 , Pages 190-196 ; 15726657 (ISSN) Jafarian, M ; Mahjani, M. G ; Gobal, F ; Danaee, I ; Sharif University of Technology
    Elsevier  2006
    Abstract
    Electrodeposition of aluminum onto graphite from a molten electrolyte containing AlCl3-NaCl-KCl was studied by the method of chronoamperometery. In the early stage of the deposition and at low cathodic potentials two-dimensional (2D) nucleation and growth proceeding through instantaneous and a multitude of progressive steps followed the initial double layer charging. The processes are manifested as peaks on a decaying chronoamperogram. Non-linear fitting methods were applied to obtain the kinetic parameters in the light of Bewick, Fleischmann and Thirsk (BFT) theory. Under more cathodic potentials, transition from 2D to three-dimensional (3D) processes have been observed as manifested in the... 

    The effect of addition of Tiron as a surfactant on the microstructure of chemically deposited zinc oxide

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 128, Issue 1-3 , 2006 , Pages 53-57 ; 09215107 (ISSN) Sadrnezhaad, S. K ; Vaezi, M. R ; Sharif University of Technology
    2006
    Abstract
    The effect of one of the surfactants such as Tiron, a compound based on the benzene molecule, on the morphology and chemical composition of zinc oxide deposits, produced from a zinc complex solution using two-stage chemical deposition (TSCD) technique, has been investigated. TSCD technique is a novel and simple chemical route for the deposition of ZnO film from aqueous solution. Zinc oxide films deposited on high purity alumina (HPA) as a substrate. The results show that the addition of Tiron changes the surface morphology and causes to form the fine-grained structure. With a dense and nodular-shape appearance, the film produced from the precursor of zinc complex-containing Tiron, is... 

    Investigation into the effect of substrate material on microstructure and optical properties of thin films deposited via magnetron sputtering technique

    , Article Ceramics International ; 2021 ; 02728842 (ISSN) Mashaiekhy Asl, J ; Nemati, A ; Hadi, I ; Mirdamadi, Sh ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study aims at investigating the effect of the substrate material on growth mechanism and also microstructure of Ta2O5 thin films. For this purpose, atomic force microscopy, scanning electron microscopy, and interferometry analyses were implemented to reveal the influence of silicon wafer and amorphous BK7 glass substrates on the nucleation and growth mechanisms of Ta2O5 thin films deposited via the radio frequency magnetron sputtering technique. Results indicated that those films with finer morphologies had relatively higher nucleation densities. Compared with BK7 glass substrate, crystals formed on the silicon wafer were shown to be finer and had lower mean areas in more nucleation... 

    The study of magnetic field implementation on cylinder quenched in boiling ferro-fluid

    , Article Applied Thermal Engineering ; Volume 64, Issue 1-2 , March , 2014 , Pages 331-338 ; ISSN: 13594311 Habibi Khoshmehr, H ; Saboonchi, A ; Shafii, M. B ; Jahani, N ; Sharif University of Technology
    Abstract
    It has been shown that nanofluids in different investigations increase or decrease heat transfer rate in boiling phenomenon. The present study examined the effects of ferro-fluid concentrations and magnetic field implementation on the fluid throughout the boiling process. Obtained are the quenching curve and boiling curve on specified surface roughness in both water and ferro-fluid with two different concentrations. A silver cylinder with Aspect ratio of 10, and surface roughness of 689 nm was heated up to 350 C and then was overwhelmed in the fluid under study. Temperatures were measured by a thermocouple which installed in the center of the cylinder. The test was carried out 5 times. The... 

    Effects of nucleation agents on the preparation of transparent glass-ceramics

    , Article Journal of the European Ceramic Society ; Volume 32, Issue 11 , August , 2012 , Pages 2989-2994 ; 09552219 (ISSN) Ghasemzadeh, M ; Nemati, A ; Baghshahi, S ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Formation of transparent glass-ceramic in the system MgO-SiO 2-Al 2O 3-K 2O-B 2O 3-F with and without addition of LiF and NaF has been investigated. Crystallization of glass-sample was conducted by controlled thermal heat-treatment, at determined nucleation and crystallization temperatures. In this regard, the effects of addition of LiF and NaF were investigated on the crystallization behavior and transparency of the samples. Low transmission (less than 80% at 600. nm) was observed in the basic composition (K).The addition of NaF and LiF caused more intense phase separation in the system. The results indicated that the glass-ceramic can remain transparent if fine grains with nano size are...