Loading...
Search for: central-pattern-generators
0.006 seconds

    Generating the Activation Patterns of the Leg Muscles during Human Locomotion Using the Central Pattern Generators as a Control Structure

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 40, Issue 2 , 2016 , Pages 87-94 ; 22286187 (ISSN) Haghpanah, S. A ; Farahmand, F ; Zohoor, H ; Razeghi, M ; Sharif University of Technology
    Shiraz University 
    Abstract
    The central pattern generators have been considered as a method to simplify the control of the complex rhythmic motions, e.g., walking, by the central nervous system. In this study, a control structure was designed to control the soleus and tibialis anterior muscles in a complete gait cycle. The activation patterns of the muscles were measured experimentally and used as the reference signals of a tracking problem. The hip angle and ground reaction force were also used as a feedforward. The feedback from the Golgi tendon acted as a regulator of muscle activity. The controller was applied to two gait trials. The results indicated that the designed controller was capable of tracking the... 

    Simulation of Human Walking Using a Combination of Synergy and Central Pattern Generators Approaches

    , Ph.D. Dissertation Sharif University of Technology Haghpanah, Arash (Author) ; Zohoor, Hassan (Supervisor) ; Farahmand, Farzam (Supervisor)
    Abstract
    Human walking as a rhythmic movement, despite of being simple in implementation, is so complex in biomechanical modeling and has attracted the attention of most of the researchers. Numerous theories and assumptions have been proposed for modeling this motor pattern. Central pattern generators are neural circuits in the spinal cord responsible for generating rhythmic motor patterns in rhythmic activities such as walking. On the other hand, muscle synergy has been introduced as a solution for alleviating the redundancy of the muscular system. In this hypothesis, the central nervous system activates muscle groups that are called muscle modules. Using this hypothesis facilitates the... 

    Dynamical Simulation and Lumbar Spine Control Flexion-Extension Movement

    , M.Sc. Thesis Sharif University of Technology Abedi, Maryam (Author) ; Vossoughi, Gholamreza (Supervisor) ; Parnianpour, Mohammad (Supervisor)
    Abstract
    Low back pain (LBP) problems are of concern to many researchers specially physiologists, biomedical engineers and... .biomechanical models can help us to furthering our knowledge of the mechanical characteristics of the spine and its neural control to know more about potential mechanisms of injury. This thesis involves computational model of lumbar spine to generate and control its flexion-extension movement.
    Model has involved 7 links: 5 lumbar vertebrae, pelvis and trunk. Desired trajectory has been generated for rhythmic and discrete motion by the central pattern generators (CPGs). And then controller has produced torque of joints to track desired trajectory. CPGs have been... 

    Three Dimensional Control of Spine in Point to Point and Rhythmic Motion Using Central Pattern Generators

    , M.Sc. Thesis Sharif University of Technology Layeghi, Hamed (Author) ; Alasty, Aria (Supervisor) ; Salarieh, Hassan (Supervisor) ; Parnianpour, Mohammad (Co-Advisor)
    Abstract
    Low Back Pain (LBP) is one of the most common diseases in the world that according to the statistics 80% of people experience it at least once in their lifetime and a lot of money is spent for its therapy. Finding some methods for prediction and diagnosis of people with LBP from people without LBP helps to reduce these expenses. One of the most effective methods for diagnosing this problem, is the modeling and simulation of its skelomuscular system. However, because of the complications in modeling, simulation and neural control of human spine, it’s not been studied comprehensively. On the other hand, most of the numerical methods are based on optimization and approximation of muscle... 

    Flexion and Extension of Spine in Sagittal Plane with Muscles Under the Control of Central Pattern Generators

    , M.Sc. Thesis Sharif University of Technology Seddighi, Alireza (Author) ; Parnianpour, Mohamad (Supervisor) ; Sadati, Nasser (Supervisor) ; Narimani, Roya (Supervisor)
    Abstract
    Low back pain is a widespread disorder in industrialized countries. Based on epidemiological reports, 80% of the population faces this activity limitation at least once in their lifetime which places tremendous human and economic costs to individuals and societies. Handling heavy loads, with fast trunk motions, repetitive movements, and awkward postures are some of the risk factors related to low back injuries. Hence, better understanding of the neuro-musculo-skeletal system performance would help us to recognize various abnormalities in spine behavior and assist us in a way to design the workplace to reduce the risk of injuries. For this purpose, we can use biomechanicals model to... 

    CPG based controller for a 5-link planar biped robot

    , Article 4th IEEE International Conference on Mechatronics, ICM 2007, Kumamoto, 8 May 2007 through 10 May 2007 ; 2007 ; 142441184X (ISBN); 9781424411849 (ISBN) Sadati, N ; Hamed, K ; Sharif University of Technology
    2007
    Abstract
    The canonical problems in control of the biped robots arise from underactuation, impulsive nature of the impact with the environment and existence of the many degrees of freedom in their mechanism. Since biped walkers have fewer actuators than degrees of freedom, they are underactuated mechanical systems. In this paper according to the humans and animals locomotion algorithms, the stability of an underactuated biped walker with point feet is done by Central Pattern Generator (CPG) and feedback networks. For tuning the parameters of the CPG network, the control problem is defined as an optimization problem. This optimization problem is solved by using of Genetic algorithm. Also a new feedback... 

    Control of lumbar spine flexion-extension movement by PD controller and feedback linearization method

    , Article ICCAS 2010 - International Conference on Control, Automation and Systems, 27 October 2010 through 30 October 2010 ; 2010 , Pages 2024-2029 ; 9781424474530 (ISBN) Abedi, M ; Vossughi, G. R ; Parnianpour, M ; Sharif University of Technology
    Abstract
    The role of motor control in development of low back pain is subject of many researches both in theoretical and experimental fields. In this work flexion-extension movement of lumbar spine have been controlled by three different methods, including feedback linearization (FBL), PD control and their combinations. The model involves 7 links: 1 link for pelvis, 5 links for lumbar vertebrae and 1 link for trunk. Torque actuators have been used on each joint to make them follow desired trajectory. In linear control method, equations of motion have been linearized with respect to upright position and then control signals have been applied in the direction of eigenvectors. Robustness of each method... 

    Neural control of a fully actuated biped robot

    , Article IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, Paris, 6 November 2006 through 10 November 2006 ; 2006 , Pages 3104-3109 ; 1424401364 (ISBN); 9781424401369 (ISBN) Sadati, N ; Hamed, K. A ; Sharif University of Technology
    IEEE Computer Society  2006
    Abstract
    According to the fact that humans and animals show marvelous abilities in walking on irregular terrain, there is a strong need for adaptive algorithms in walking of biped robots to behave like them. Since the stance leg can easily rise from the ground and it can easily rotate about the toe or the heel, the problem of controlling the biped robots is difficult. In this paper, according to the adaptive locomotion patterns of animals, coordination and control of body links have been done with Central Pattern Generator (CPG) in spinal cord and feedback network from musculoskeletal system. A one layer feedforward neural network that its inputs are the scaled joint variables and the touch sensors... 

    Modular neuromuscular control of human locomotion by central pattern generator

    , Article Journal of Biomechanics ; Volume 53 , 2017 , Pages 154-162 ; 00219290 (ISSN) Haghpanah, S. A ; Farahmand, F ; Zohoor, H ; Sharif University of Technology
    Abstract
    The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to... 

    Neural control of an underactuated biped robot

    , Article 2006 6th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, Genoa, 4 December 2006 through 6 December 2006 ; 2006 , Pages 593-598 ; 142440200X (ISBN); 9781424402007 (ISBN) Sadati, N ; Hamed, K. A ; Sharif University of Technology
    2006
    Abstract
    According to the fact that humans and animals show marvelous capacities in walking on irregular terrain, there is a strong need for adaptive algorithms in walking of biped robots to behave like them. Since the stance leg can easily rise from the ground, the problem of controlling the biped robots is difficult. In other words, the biped walkers have fewer actuators than the degrees of freedom. So they are underactuated mechanical systems. In this paper according to the humans and animals locomotion algorithms, the stability of an underactuated biped walker having point feet is investigated by central pattern generators. For tuning the parameters of the CPG, an effective energy based... 

    Distributed Optimal Control via Central Pattern Generator with Application to Biped Locomotion

    , M.Sc. Thesis Sharif University of Technology Yazdani Jahromi, Masoud (Author) ; Salarieh, Hassan (Supervisor) ; Saadat Foumani, Mahmood (Supervisor)
    Abstract
    Human walking is widely recognized as one of the most adaptable and robust forms of locomotion in nature, with intricate neural and biomechanical systems interacting to support this complex behavior. It is proposed that these systems are organized in a hierarchical structure, with the lower level comprising a complex distributed system consisting of muscles and the spinal cord, and the higher level being the brain cortex. The higher level is responsible for training and monitoring the output of the lower level, and intervening when the lower system fails to stabilize the system. To control the lower level, one popular model that has emerged is the central pattern generator (CPG). It is... 

    Control of human spine in repetitive sagittal plane flexion and extension motion using a CPG based ANN approach

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2011 , Pages 8146-8149 ; 1557170X (ISSN) ; 9781424441211 (ISBN) Sedighi, A ; Sadati, N ; Nasseroleslami, B ; Vakilzadeh, M. K ; Narimani, R ; Parnianpour, M ; Sharif University of Technology
    Abstract
    The complexity associated with musculoskeletal modeling, simulation, and neural control of the human spine is a challenging problem in the field of biomechanics. This paper presents a novel method for simulation of a 3D trunk model under control of 48 muscle actuators. Central pattern generators (CPG) and artificial neural network (ANN) are used simultaneously to generate muscles activation patterns. The parameters of the ANN are updated based on a novel learning method used to address the kinetic redundancy due to presence of 48 muscles driving the trunk. We demonstrated the feasibility of the proposed method with numerical simulation of experiments involving rhythmic motion between upright... 

    Neural controller for a 5-link planar biped robot

    , Article 16th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN, Jeju, 26 August 2007 through 29 August 2007 ; 2007 , Pages 980-985 ; 1424416345 (ISBN); 9781424416349 (ISBN) Sadati, N ; Hamed, K ; Sharif University of Technology
    2007
    Abstract
    The canonical problems in control of the biped robots arise from underactuation, impulsive nature of the impact with the environment and existence of the many degrees of freedom in their mechanism. Since biped walkers have fewer actuators than degrees of freedom, they are underactuated mechanical systems. In this paper according to the humans and animals locomotion algorithms, the stability of an underactuated biped walker with point feet is done by central pattern generator and feedback networks. For tuning the parameters of the CPG network, the control problem is defined as an optimization problem. This optimization problem is solved by using of Genetic algorithm. Also a new feedback... 

    Neural control of a fully actuated biped robot

    , Article 2006 IEEE International Conference on Robotics and Biomimetics, ROBIO 2006, Kunming, 17 December 2006 through 20 December 2006 ; 2006 , Pages 1299-1304 ; 1424405718 (ISBN); 9781424405718 (ISBN) Sadati, N ; Hamed, K. A ; Sharif University of Technology
    2006
    Abstract
    According to the fact that humans and animals show marvelous abilities in walking on irregular terrain, there is a strong need for adaptive algorithms in walking of biped robots to behave like them. Since the stance leg can easily rise from the ground and it can easily rotate about the toe or the heel, the problem of controlling the biped robots is difficult. In this paper, according to the adaptive locomotion patterns of animals, coordination and control of body links have been done with Central Pattern Generator (CPG) in spinal cord and feedback network from musculoskeletal system. A one layer feedforward neural network that its inputs are the scaled joint variables and the touch sensors...