Loading...
Search for: x--ray-diffraction
0.013 seconds
Total 788 records

    Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-fenton-like degradation of organic contaminants

    , Article Journal of Colloid and Interface Science ; Volume 602 , 2021 , Pages 73-94 ; 00219797 (ISSN) Bagherzadeh, B ; Kazemeini, M ; Mahmoodi, N. M ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Herein, MIL-101(Fe), CoFe2O4, novel binary (MIL-101(Fe)/CoFe2O4, MIL-101(Fe)/GO and CoFe2O4/GO), and ternary (MIL-101(Fe)/CoFe2O4/(3%)GO and MIL-101(Fe)/CoFe2O4/(7%)GO) magnetic composites based upon the MIL-101(Fe) were synthesized. The XRD, FESEM, TEM, EDX, BET-BJH, FTIR, VSM, DRS, PL, EIS and other electrochemical analyses were applied to characterize samples. The MIL/CoFe2O4/(3%)GO demonstrated the best performance compared to other samples for visible light photocatalytic and photo-Fenton-like degradation of Direct Red 23 (DtR-23), Reactive Red 198 (ReR-198) dyes as well as Tetracycline Hydrochloride (TC-H) antibiotic. Degradation of dyes using the ternary composite after 70 min of... 

    An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light

    , Article Journal of Hazardous Materials ; Volume 413 , 2021 ; 03043894 (ISSN) Kohantorabi, M ; Giannakis, S ; Moussavi, G ; Bensimon, M ; Gholami, M. R ; Pulgarin, C ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this work, Ag nanoparticles were loaded on ZIF-67 covered by graphene oxide (Ag/ZIF-67@GO), and its catalytic performance was studied for the heterogeneous activation of peroxymonosulfate (PMS) under visible-light. The catalyst surface morphology and structure were analyzed by FT-IR, XRD, XPS, DRS, FE-SEM, EDX, TEM, BET, ICP-AES and TGA analysis. The efficacy of PMS activation by the Ag/ZIF-67@GO under visible light was assessed by phenol degradation and E. coli inactivation. Phenol was completely degraded within 30 min by HO•, SO4•− and O2•− generated through the photocatalytic PMS activation. In addition, total E. coli inactivation was attained in 15 min that confirmed the highly... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    Electrospun Ag-decorated reduced GO-graft-chitosan composite nanofibers with visible light photocatalytic activity for antibacterial performance

    , Article Chemosphere ; Volume 299 , 2022 ; 00456535 (ISSN) Asgari, S ; Mohammadi Ziarani, G ; Badiei, A ; Setayeshmehr, M ; Kiani, M ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The treatment of water contaminated by bacteria is becoming a necessity. The nanomaterials possessing both intrinsic antibacterial properties and photocatalytic activity are excellent candidates for water disinfection. The powdered form of nanomaterials can be aggregated while embedding the nanomaterials into the NFs can overcome the limitation and enhance the photocatalytic activity and transition from UV-light to visiblelight. Here, graphene oxide (GO) was synthesized, grafted to chitosan, and decorated with silver nanoparticles (Ag NPs) to produce Ag-decorated reduced GO-graft-Chitosan (AGC) NPs. The blends of polyacrylonitrile (PAN) and AGC NPs were prepared in various concentrations of... 

    Development of HAp/GO/Ag coating on 316 LVM implant for medical applications

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 126 , 2022 ; 17516161 (ISSN) Ahmadi, R ; Izanloo, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, antibacterial activity, biocompatibility, and corrosion resistance of 316 LVM implants were improved using the development of HAp/GO/Ag nanocomposite coatings by the dip-coating method. The XRD and FTIR results confirmed the synthesis of HAp/GO/Ag nanocomposites. HAp/Ag nanoparticles (68 nm) bound to epoxy, hydroxyl, and carboxyl functional groups on GO sheets (size of GO sheets varies from 255 to 1480 nm) by electrostatic interaction. FESEM images showed that HAp/GO/Ag coatings had higher density and fewer micro-cracks than pure HAp coatings. In addition, HAp/GO/Ag coatings showed optimized nano-hardness (4.5 GPa) and elasticity modulus (123 GPa). The results of... 

    Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Hasanvandian, F ; Shokri, A ; Moradi, M ; Kakavandi, B ; Rahman Setayesh, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, spinel CuCo2O4 (CCO) with a hierarchical hollow sphere morphology was encapsulated in V2O5-decorated ultra-wrinkled graphitic carbon-nitride (VO-UCN) for the first time via a facile glycerol-assisted solvothermal method in the interest of developing a novel high-efficiency double Z-type nano-photocatalyst (denoted as VO-UCN@CCO). The remarkable physicochemical features of the as-prepared nano-photocatalysts were verified using diverse characterization techniques including TGA, XRD, FT-IR, FE-SEM, TEM, BET, UV–vis DRS, PL, EIS, and transient photocurrent techniques. Herein, VO-UCN@CCO nanocomposite was employed for the photodisintegration of levofloxacin (LVOF) antibiotic under... 

    Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders

    , Article ACS Biomaterials Science and Engineering ; Volume 8, Issue 1 , 2022 , Pages 54-81 ; 23739878 (ISSN) Ebrahimi, M ; Asadi, M ; Akhavan, O ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently...