Loading...
Search for: wettability-alteration
0.015 seconds
Total 107 records

    Impact of rock morphology on the dominating enhanced oil recovery mechanisms by low salinity water flooding in carbonate rocks

    , Article Fuel ; Volume 324 , 2022 ; 00162361 (ISSN) Farhadi, H ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Because of the complex nature of carbonate reservoirs, the required conditions for effective Low Salinity Water Flooding (LSWF) in these reservoirs need further and in depth investigation. In the present study, three calcite cores, i.e. Cal-1, Cal-2, and IL, with the same chemical composition are subjected to tertiary low salinity water flooding (LSWF), while the crude oil and composition of flooding brine kept the same. The experimental results show significant difference in the amount of enhanced oil recovery, as IL had the most additional oil recovery (20.8 % of IOIP), followed by Cal-2 (10.5 % of IOIP) and Cal-1 (3.9 % of IOIP). The results of contact angle, zeta potential, and effluent... 

    Impact of oil polarity on the mixing time at the pore scale in low salinity waterflooding

    , Article Energy and Fuels ; Volume 34, Issue 10 , 16 September , 2020 , Pages 12247-12259 Mohammadi, S ; Mahani, H ; Ayatollahi, S ; Niasar, V ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    The efficiency of low salinity waterflooding, particularly during tertiary mode injection, is highly controlled by in situ mixing between the stagnant regions holding high salinity water (HSW) and the flowing regions containing low salinity water (LSW) because it impacts directly the electrokinetics of wettability alteration and the time scale of the low salinity effect. This study aims to address the effects of oil polarity and charged rock surfaces on the time scale of mixing and transport under two-phase flow conditions. A systematic series of micromodel experiments were performed. The micromodels were first saturated with high salinity formation brine and oil (both model and crude oil);... 

    Impact of ionic composition on modulating wetting preference of calcite surface: Implication for chemically tuned water flooding

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 568 , 2019 , Pages 470-480 ; 09277757 (ISSN) Saeedi Dehaghani, A. H ; Badizad, M. H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Despite previous researches on ion-engineered waterflooding (IEWF), its underlying mechanisms are not fully understood, particularly in presence of additives, like surfactants. This paper concerned with the contribution of Ca 2+ , Mg 2+ , SO 4 2- and Na + into altering wettability of oil-wet carbonate minerals towards water preferred state. As a mechanistic study, an experiment workflow was conducted to probe the impact of ions' concentrations in SW, either with or without sodium dodecylbenzene sulfonate (SDBS) which is an anionic surfactant. At first, contact angle (CA) measurement was carried out to evaluate the degree of wettability reversal upon treating the oil-aged calcite slabs with... 

    Experimental study on enhanced oil recovery by low salinity water flooding on the fractured dolomite reservoir

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 40, Issue 5 , 2021 , Pages 1703-1719 ; 10219986 (ISSN) Ebrahimzadeh Rajaee, S ; Gerami, S ; Safekordi, A. A ; Bahramian, A. R ; Ganjeh Ghazvini, M ; Sharif University of Technology
    Iranian Institute of Research and Development in Chemical Industries  2021
    Abstract
    Enhanced Oil Recovery from carbonate reservoirs is a major challenge especially in naturally fractured formations where spontaneous imbibition is a main driving force. The Low Salinity Water Injection (LSWI) method has been suggested as one of the promising methods for enhanced oil recovery. However, the literature suggests that LSWI method, due to high dependence on rock mineralogy, injected and formation water salt concentration, and complexity of reactions is not a well-established technology in oil recovery from carbonate reservoirs. The underlying mechanism of LSWI is still not fully understood. Due to lack of LSWI study in free clay dolomite fractured reservoir, and to investigate of... 

    Experimental study of the chemical stimulation of Iranian fractured carbonate reservoir rocks as an EOR potential, the impact on spontaneous imbibition and capillary pressure

    , Article Scientia Iranica ; Volume 17, Issue 1 C , 2010 , Pages 37-45 ; 10263098 (ISSN) Zangeneh Var, A. R ; Bastani, D ; Badakhshan, A ; Sharif University of Technology
    2010
    Abstract
    Beside their worldwide abundance, oil recovery from fractured carbonate reservoirs is commonly low. Such reservoirs are usually oil-wet, thus, waterflooding leads into early breakthrough and low recovery due to the high conductivity of the fracture network, negative capillary pressure of the matrix and, consequently, the poor spontaneous imbibitions of water from fractures into the matrix during the course of waterflooding. In such problematic reservoirs, changing the wettability of the matrix toward water-wetness can improve spontaneous imbibition by changing the sign and, thus, the direction of capillary forces, resulting in an improvement of waterflood efficiency and, consequently, oil... 

    Experimental study and surface complexation modeling of non-monotonic wettability behavior due to change in brine salinity/composition: Insight into anhydrite impurity in carbonates

    , Article Journal of Molecular Liquids ; Volume 365 , 2022 ; 01677322 (ISSN) Madadi Mogharrab, J ; Ayatollahi, S ; Pishvaie, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Wettability alteration as the main mechanism of improved oil recovery in carbonates during low salinity/engineered water flooding (LS/EWF) is a complex phenomenon due to high heterogeneity of rock. During LS/EWF, wettability changes when electrochemical interactions at carbonate-brine interface happen. Anhydrite impurity in carbonates is one of the most important parameters affecting the electrochemical interactions at the rock-brine interface and the wettability alteration process. Therefore, the success of LS/EWF in carbonate reservoirs lies in perceiving the role of impurities such as anhydrite, from a geochemical and dissolution point of view. Modified flotation tests (MFT) were... 

    Experimental investigation on the dominating fluid-fluid and rock-fluid interactions during low salinity water flooding in water-wet and oil-wet calcites

    , Article Journal of Petroleum Science and Engineering ; Volume 204 , 2021 ; 09204105 (ISSN) Farhadi, H ; Fatemi, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low salinity water flooding (LSWF) has the potential to enhance the oil recovery by affecting the fluid-fluid and rock-fluid interactions. Therefore, a systematic investigation on the effect of initial wetting state (water-wet or oil-wet) of pure calcite is conducted to study the importance of these interactions on the effectiveness of LSWF. In the case of initially water-wet cores, more oil recovery efficiency is observed for more saline water cases. To shed light on the possible involved mechanisms, dynamic IFT, dynamic contact angle (CA), oil/brine and rock/brine surfaces zeta potentials, and effluent pH are measured. It is shown that the short-term effect of IFT reduction and long-term... 

    Experimental investigation on synergic effect of salinity and pH during low salinity water injection into carbonate oil reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 202 , 2021 ; 09204105 (ISSN) Mehraban, M. F ; Ayatollahi, S ; Sharifi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Interaction between rock-fluid and fluid-fluid can have a significant effect on oil recovery. Changing the wettability of reservoir rock toward more water-wet or less oil-wet state is one of the expected mechanisms during low salinity water injection (LSWI). pH and salinity are of the most eminent factors of injection water controlling the wettability state of a crude oil/brine/rock system during any waterflooding operation. A small change in pH can affect the surface charges at the rock/water and oil/water interfaces leading to wettability alteration in a porous medium. In this study, the synergic effect of salinity and pH on the wettability state of carbonate rocks is evaluated through... 

    Experimental investigation of the influence of fluid-fluid interactions on oil recovery during low salinity water flooding

    , Article Journal of Petroleum Science and Engineering ; Volume 182 , 2019 ; 09204105 (ISSN) Mokhtari, R ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This study aims to investigate the role of fluid-fluid interactions during low salinity water flooding, using crude oil from an Iranian oil reservoir. To minimize the effects of mineral heterogeneity and wettability alteration, a synthetic sintered glass core was utilized and all coreflooding experiments were performed at low temperatures without any aging process. The effect of fluid-fluid interactions were investigated in both secondary and tertiary injection modes. pH measurements as well as UV-Vis spectroscopy and interfacial tension (IFT) analysis were performed on the effluent brine samples. Results: show that fluid-fluid interactions, mainly the dissolution of crude oil polar... 

    Experimental investigation of nano-biomaterial applications for heavy oil recovery in shaly porous models: A pore-level study

    , Article Journal of Energy Resources Technology, Transactions of the ASME ; Volume 137, Issue 1 , August , 2014 ; 01950738 (ISSN) Mohebbifar, M ; Ghazanfari, M. H ; Vossoughi, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2014
    Abstract
    Application of nano or biomaterials for enhanced oil recovery (EOR) has been recently much attended by petroleum engineering researchers. However, how would be the displacement mechanisms and how would change the recovery efficiency while nano and biomaterials are used simultaneously is still an open question. To this end, a series of injection tests performed on micromodel containing shale strikes. Three types of biomaterials including biosurfactant, bioemulsifier, and biopolymer beside two types of nanoparticles including SiO2 and TiO2 at different concentrations were used as injection fluids. The microscopic as well as macroscopic efficiency of displacements were observed from analysis of... 

    Experimental investigation of inorganic scale deposition during smart water injection - A formation damage point of view

    , Article IOR NORWAY 2017 - 19th European Symposium on Improved Oil Recovery: Sustainable IOR in a Low Oil Price World, 24 April 2017 through 27 April 2017 ; 2017 ; 9789462822092 (ISBN) Ghasemian, J ; Mokhtari, R ; Ayatollahi, S ; Riahi, S ; Malekzade, E ; Sharif University of Technology
    Abstract
    Smart water injection is determined as an effective EOR process to change the wettability and interfacial tension for better micro/macro sweep efficiencies. This water contains reactive ions such as Mg ∧(2+), Ca ∧(2+) and SO-4 ∧(2-) which can act as potential determining ions and change the surface charge of calcite rocks. One of the major concerns in the execution of an effective waterflood, especially in tight carbonate reservoirs, is the incompatibility between the formation brine and the injecting water. This research work aims to investigate the most important challenge of waterflooding process related to the possible formation damage because of inorganic scale deposition during... 

    Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    , Article Journal of Nanoparticle Research ; Volume 18, Issue 9 , 2016 ; 13880764 (ISSN) Behzadi, A ; Mohammadi, A ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at... 

    Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study

    , Article Applied Energy ; Volume 268 , 2020 Zanganeh, P ; Soltani Goharrizi, A ; Ayatollahi, S ; Feilizadeh, M ; Dashti, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The condensation process is of great importance in many heat transfer devices in which a large amount of energy must be transferred. Furthermore, condensation is a crucial part of energy conversion and affects the energy efficiency of thermal desalination plants and solar stills. During the condensation process in solar stills, an essential part of the energy is transferred through the condensation surface to produce fresh water. Therefore, the condensation surface plays a significant role in the working efficiency of solar stills. The wettability of the condensation surface influences the condensation mechanism, which, in turn, affects the efficiency of solar stills. This study aims to... 

    Effects of low-salinity water coupled with silica nanoparticles on wettability alteration of dolomite at reservoir temperature

    , Article Petroleum Science and Technology ; Volume 34, Issue 15 , 2016 , Pages 1345-1351 ; 10916466 (ISSN) Sadatshojaei, E ; Jamialahmadi, M ; Esmaeilzadeh, F ; Ghazanfari, M. H ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Wettability alteration in porous media is one of the mechanisms for enhancing oil recovery through injecting low-salinity water into carbonate reservoirs, in which active ions can remove the carboxylic oil component from the rock surface, altering the rock's wettability toward a water-wet condition. This study investigated the concomitant effects of low-salinity water and hydrophilic SiO2 nanoparticles on oil-wet dolomite rock. Results revealed that low-salinity water coupled with hydrophilic nano-SiO2 in oil-wet dolomite rock remarkably affected the wettability alteration of the rock, showing that the simultaneous presence of ions in water and hydrophilic nano-SiO2 led to considerable... 

    Effect of time and temperature on crude oil aging to do a right surfactant flooding with a new approach

    , Article Proceedings of the Annual Offshore Technology Conference ; Vol. 2, issue , 2014 , p. 1136-1142 ; ISSN: 01603663 ; ISBN: 9781632663870 Heidari, M. A ; Habibi, A ; Ayatollahi, S ; Masihi, M ; Ashoorian, S ; Sharif University of Technology
    Abstract
    Dilute Surfactant flooding has been recognized as one of the significant processes in chemical flooding. Many oil reservoirs became appropriate candidates for surfactant/water flooding when screening criteria was developed. Injected surfactant tried to mobilize the residual oil that was trapped in interstice. The main contributing mechanism to enhance oil recovery by surfactant flooding was defined as rock wettability alteration. Wettability is one of the substantial parameters to choose the best approach for a successful surfactant flooding in which tiny change in wettability will lead to improve oil recovery fundamentally. In this experimental study the effect of different aging time and... 

    Effect of SO4 −2 ion exchanges and initial water saturation on low salinity water flooding (LSWF) in the dolomite reservoir rocks

    , Article Journal of Dispersion Science and Technology ; Volume 41, Issue 6 , 2020 , Pages 841-855 Safavi, M. S ; Masihi, M ; Safekordi, A. A ; Ayatollahi, S ; Sadeghnejad, S ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    The low salinity water injection has become one of the most important studies in the oil industry for improving oil recovery compared to conventional seawater injection. Thus, extensive studies have been conducted in carbonate and sandstone reservoirs to investigate how the physical properties of rocks and the chemical composition of fluids influence low salinity effect, while, the carbonate reservoir rocks requires more investigation of the effect of molecular and/or ionic interactions. In this experimental work, the effectiveness of various water flooding schemes in carbonate reservoir rock samples is investigated. In this regard, the oil recovery potential of seawater (SW), reservoir... 

    Effect of nanoclay on improved rheology properties of polyacrylamide solutions used in enhanced oil recovery

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 5, Issue 2 , June , 2015 , Pages 189-196 ; 21900558 (ISSN) Cheraghian, G ; Khalili Nezhad, S. S ; Kamari, M ; Hemmati, M ; Masihi, M ; Bazgir, S ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Recently, a renewed interest arises in the application of nanotechnology for the upstream petroleum industry. In particular, adding nanoparticles to fluids may drastically benefit enhanced oil recovery (EOR) and improve well drilling, by changing the properties of the fluid, rocks wettability alteration, advanced drag reduction, strengthening the sand consolidation, reducing the interfacial tension and increasing the mobility of the capillary trapped oil. In this study, we focus on roles of clay nano-particles on polymer viscosity. Polymer-flooding schemes for recovering residual oil have been in general less than satisfactory due to loss of chemical components by adsorption on reservoir... 

    Direct numerical simulation of the effects of fluid/fluid and fluid/rock interactions on the oil displacement by low salinity and high salinity water: Pore-scale occupancy and displacement mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Alizadeh, M ; Fatemi, M ; Mousavi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Laboratory experiments have shown that performance of waterflooding in oil reservoirs could be significantly increased by lowering the ionic strength and/or manipulation of its composition, which is generally known as low salinity waterflooding (LSWF). The involved mechanisms in additional oil production can be generally categorized in two categories, fluid/fluid and fluid/rock interactions. The distribution of the phases and the involved displacement mechanisms would be strongly affected by the inter-relations between capillary and viscous forces. Although there have been recent advances in the simulation of the LSWF at core scale and beyond and some models are included in commercial... 

    Direct numerical simulation of the effects of fluid/fluid and fluid/rock interactions on the oil displacement by low salinity and high salinity water: pore-scale occupancy and displacement mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Alizadeh, M ; Fatemi, M ; Mousavi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Laboratory experiments have shown that performance of waterflooding in oil reservoirs could be significantly increased by lowering the ionic strength and/or manipulation of its composition, which is generally known as low salinity waterflooding (LSWF). The involved mechanisms in additional oil production can be generally categorized in two categories, fluid/fluid and fluid/rock interactions. The distribution of the phases and the involved displacement mechanisms would be strongly affected by the inter-relations between capillary and viscous forces. Although there have been recent advances in the simulation of the LSWF at core scale and beyond and some models are included in commercial... 

    Direct insights into the pore-scale mechanism of low-salinity waterflooding in carbonates using a novel calcite microfluidic chip

    , Article Fuel ; Volume 260 , 15 January , 2020 Mohammadi, M ; Mahani, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    One of the key open questions in the area of low or controlled salinity water flooding (LSWF or CSWF) is how the observed oil recovery at macro-scale (e.g. Darcy or core-scale) can the explained and what underlying microscopic mechanisms drive it. Thus far, the micromodel investigation of LSWF has been limited to sandstones, remaining challenging to apply to carbonates. In this paper we aim to i) extend the capability to fabricate a novel calcite micromodel using Iceland spar calcite crystal, ii) investigate the pore-scale mechanisms leading to oil recovery from carbonates. A target crude oil-brine-rock (COBR) system was first selected. To screen potential brines which can produce...