Loading...
Search for: turbine
0.01 seconds
Total 590 records

    Stand alone performance of permanent magnet synchronous wind power generator with current source matrix converter

    , Article Electric Power Components and Systems ; Volume 43, Issue 8-10 , 2015 , Pages 1018-1027 ; 15325008 (ISSN) Hojabri, H ; Mokhtari, H ; Chang, L ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    A matrix converter is a voltage/current source AC/AC frequency converter. In grid-connected operation of a variable-speed permanent magnet synchronous wind power generator, the matrix converter is normally controlled as a voltage source converter. In this control method, the generator-side voltage is synthesized from the grid-side voltage source. However, in the stand-alone mode of operation, the grid-side stiff voltage source is not available, and the input filter of the matrix converter is unstable. In this article, a new control method is presented that controls a permanent magnet synchronous wind generator in a stand-alone mode with a matrix converter as a current source converter. The... 

    Second law based analysis of supplementary firing effects on the Heat Recovery Steam Generator in a combined cycle power plant

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 1 , 2010 , Pages 201-209 ; 9780791849156 (ISBN) Karrabi, H ; Rasoulipour, S ; Sharif University of Technology
    2010
    Abstract
    The supplementary firing is one of the techniques which are used to increase the output power of the combined cycle power plants (CCPP). The low construction cost per generated power encourages designers to consider it in the new CCPP. In this paper the thermal and exergy analyses of HRSG for various operating conditions in variation of loads and variation of ambient temperature carried out. They are based on the performance test data at different operating conditions. The objective of these analyses is to present the effects of supplementary firing on gross power output, combined cycle efficiency and the exergy loss in Heat Recovery Steam Generator (HRSG) devices at different ambient... 

    Dynamic behavior analysis of doubly-fed induction generator wind turbines - The influence of rotor and speed controller parameters

    , Article International Journal of Electrical Power and Energy Systems ; Volume 32, Issue 5 , June , 2010 , Pages 464-477 ; 01420615 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    2010
    Abstract
    This paper analytically investigates the effects of system and controller parameters and operating conditions on the dynamic and transient behavior of wind turbines (WTs) with doubly-fed induction generators (DFIGs) under voltage dips and wind speed fluctuations. Also, it deals with the design considerations regarding rotor and speed controllers. The poorly damped electrical and mechanical modes of the system are identified, and the effects of system parameters, and speed/rotor controllers on these modes are investigated by modal and sensitivity analyses. The results of theoretical studies are verified by time domain simulations. It is found that the dynamic behavior of the DFIG-based WT... 

    On the fracture toughness behavior of in-situ Al-Ti composites produced via mechanical alloying and hot extrusion

    , Article Journal of Alloys and Compounds ; Volume 681 , 2016 , Pages 12-21 ; 09258388 (ISSN) Basiri Tochaee, E ; Madaah Hosseini, H. R ; Seyed Reihani, S. M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Mechanical alloying and hot extrusion techniques were employed to produce in-situ fully dens Al-Ti composites without applying any heat treatment. The focus of this study is the investigation of fracture toughness in produced composites in order to improve it and to explain the mechanisms responsible for the fracture. The morphology of milled powders was studied by Scanning Electron Microscopy (SEM). The microstructure of the extruded composites was examined by Optical Microscopy (OM) and Field Emission Scanning Electron Microscopy (FESEM). Moreover, the density and hardness of samples were investigated. Three point bending test of the single edge notched beam (SENB) samples was applied to... 

    Modification of DFIG's active power control loop for speed control enhancement and inertial frequency response

    , Article IEEE Transactions on Sustainable Energy ; Volume 8, Issue 4 , 2017 , Pages 1772-1782 ; 19493029 (ISSN) Ashouri Zadeh, A ; Toulabi, M ; Bahrami, S ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    This paper proposes a fuzzy-based speed controller for the doubly fed induction generator (DFIG)-based wind turbines with the rotor speed and wind speed inputs. The controller parameters are optimized using the particle swarm optimization algorithm. To accelerate tracking the maximum power point trajectory, the conventional controller is augmented with a feed-forward compensator, which uses the wind speed input and includes a high-pass filter. The proposed combined speed controller is robust against wind measurement errors and as the accuracy of anemometers increases the speed regulation tends toward the ideal controller. The cutoff frequency of the applied filter is determined considering a... 

    Parallelized numerical modeling of the interaction of a solid object with immiscible incompressible two-phase fluid flow

    , Article Engineering Computations (Swansea, Wales) ; Volume 34, Issue 3 , 2017 , Pages 709-724 ; 02644401 (ISSN) Ghasemi, A ; Nikbakhti, R ; Ghasemi, A ; Hedayati, F ; Malvandi, A ; Sharif University of Technology
    Abstract
    Purpose - A numerical method is developed to capture the interaction of solid object with two-phase flow with high density ratios. The current computational tool would be the first step of accurate modeling of wave energy converters in which the immense energy of the ocean can be extracted at low cost. Design/methodology/approach - The full two-dimensional Navier-Stokes equations are discretized on a regular structured grid, and the two-step projection method along with multi-processing (OpenMP) is used to efficiently solve the flow equations. The level set and the immersed boundary methods are used to capture the free surface of a fluid and a solid object, respectively. The full... 

    Comparative study and multi-objective optimization of plate-fin recuperators applied in 200 kW microturbines based on non-dominated sorting and normalization method considering recuperator effectiveness, exergy efficiency and total cost

    , Article International Journal of Thermal Sciences ; Volume 124 , 2018 , Pages 50-67 ; 12900729 (ISSN) Maghsoudi, P ; Sadeghi, S ; Gorgani, H. H ; Sharif University of Technology
    Elsevier Masson SAS  2018
    Abstract
    The current study aims to simultaneously and comprehensively investigate the performance of four types of recuperative heat exchangers applied in 200 kW microturbines by using numerical method. Different fin configurations including rectangular, triangular, louver and offset strip fins are employed in the recuperators to enhance the heat transfer rate. Additionally, the calculations are separately undertaken for both counter and cross-flow arrangements. To achieve the best performance, a three-objective optimization problem is solved using Non-dominated Sorting Genetic Algorithm (NSGA-II). Recuperator effectiveness and exergy efficiency and total cost are considered as the objective... 

    Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone

    , Article Energy ; Volume 203 , 2020 Hamidzadeh, Z ; Sattari, S ; Soltanieh, M ; Vatani, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a systematic investigation and modeling of all available technologies (such as NGL, injection in pipelines, LNG, GTL, NGH, and CNG plants, EOR, electricity production by thermal power plants, and water generation by MED technologies) for flare gas recovery has been developed. An optimal combination of the technologies has been proposed for flare gas recovery of five oil wells in the south of Iran with different specifications as case studies. The optimal combinations of all the technologies have been investigated with minimizing the payback period of capital costs (economical) and maximizing CO2 pollutant reduction (environmental) objective functions by using the genetic... 

    Tuneable vibration absorber design to suppress vibrations: An application in boring manufacturing process

    , Article Journal of Sound and Vibration ; Volume 318, Issue 1-2 , 2008 , Pages 93-108 ; 0022460X (ISSN) Moradi, H ; Bakhtiari Nejad, F ; Movahhedy, M. R ; Sharif University of Technology
    2008
    Abstract
    Dynamic vibration absorbers are used to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges, etc. Tuneable vibration absorbers (TVA) are also used as semi-active controllers. In this paper, the application of a TVA for suppression of chatter vibrations in the boring manufacturing process is presented. The boring bar is modeled as a cantilever Euler-Bernoulli beam and the TVA is composed of mass, spring and dashpot elements. In addition, the effect of spring mass is considered in this analysis. After formulation of the problem, the optimum specifications of the absorber such as spring stiffness, absorber... 

    Laboratory detection methods for the human coronaviruses

    , Article European Journal of Clinical Microbiology and Infectious Diseases ; Volume 40, Issue 2 , 2021 , Pages 225-246 ; 09349723 (ISSN) Shabani, E ; Dowlatshahi, S ; Abdekhodaie, M. J ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Coronaviruses are a group of envelop viruses which lead to diseases in birds and mammals as well as human. Seven coronaviruses have been discovered in humans that can cause mild to lethal respiratory tract infections. HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 are the low-risk members of this family and the reason for some common colds. Besides, SARS-CoV, MERS-CoV, and newly identified SARS-CoV-2, which is also known as 2019-nCoV, are the more dangerous viruses. Due to the rapid spread of this novel coronavirus and its related disease, COVID-19, a reliable, simple, fast, and low-cost detection method is necessary for patient diagnosis and tracking worldwide. Human coronaviruses detection...