Loading...
Search for: turbine
0.009 seconds
Total 590 records

    Wind turbine power improvement utilizing passive flow control with microtab

    , Article Energy ; Volume 150 , 2018 , Pages 575-582 ; 03605442 (ISSN) Ebrahimi, A ; Movahhedi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the effect of deploying microtabs on performance improvement of a horizontal axis wind turbine blade is numerically investigated in three-dimensions. The NREL Phase VI, a stall-regulated upwind wind turbine, is used as the baseline case. Different cases are considered to investigate the effects of spanwise location as well as the height variation of tabs along the blade span, on the flow over the rotor blade. In all cases, the tab is located at 95% chord of the airfoil section on the lower surface of the blade. Results reveal that locating microtabs at the outboard part of the blade has a greater impact on the rotor performance than the inboard part. However, both cases... 

    A novel design and performance optimization methodology for hydraulic Cross-Flow turbines using successive numerical simulations

    , Article Renewable Energy ; Volume 169 , 2021 , Pages 1402-1421 ; 09601481 (ISSN) Mehr, G ; Durali, M ; Khakrand, M. H ; Hoghooghi, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This paper introduces a new methodology for designing and optimizing the performance of hydraulic Cross-Flow turbines for a wide range of operating conditions. The methodology is based on a one-step approach for the system-level design phase and a three-step, successive numerical analysis approach for the detail design phase. Compared to current design methodologies, not only does this approach break down the process into well-defined steps and simplify it, but it also has the advantage that once numerical simulations are conducted for a single turbine, most of the results can be used for an entire class of Cross-Flow turbines. In this paper, after a discussion of the research background, we... 

    Multi-objective Optimization of Internal Cooling Passages for a Turbine Blade

    , M.Sc. Thesis Sharif University of Technology Bokaei, Hamid Reza (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    In the present work, the shape and position of internal cooling passages within an axial turbine blade have been optimized to achieve a uniform temperature distribution with the minimum cooling air flow while the maximum temperature is below the allowable value. Four cooling passages are made within the blade. The cross section shape of each passage is parameterized using a new method based on an 8-order Bezier curve. This curve which is represented in terms of Bezier control points has much flexibility and can produce a large variety of shapes. The shape of the blade surface profile remains unchanged during the optimization process. The numerical simulation has been carried out using... 

    Active Control of Edgewise Vibrations in Wind Turbine Blade by Optimization of the Number and Locations of the Intermediate Actuators

    , M.Sc. Thesis Sharif University of Technology Pishbahar, Baher (Author) ; Moradi, Hamed (Supervisor)
    Abstract
    Vibrations in HAWT reduce their efficiency and increase maintenance costs. In this paper, the blade edgewise vibrations are reduced by using several actuators in different parts of the wind turbine blade and optimization of the number and locations of actuators. The wind turbine blade dynamic behavior is investigated by using dynamic modeling. The actuators are trusses that are located inside each blade and apply control force to different parts of the blade. Active control force is applied to reduce edgewise vibrations. The designed controller is applied and simulated on NREL 5MW wind turbine. By applying the controller, the edgewise vibrations of wind turbine blades are significantly... 

    Development of a Suitable Computational Conjugate Heat Transfer Algorithm to Analyze Turbine Blade Internal Cooling

    , M.Sc. Thesis Sharif University of Technology Sajadi, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Nowadays, the study of flow and heat transfer in turbine engines has become critical due to their increasing use and importance in various engineering industries. The critical issue of blade burning in the first row of turbine’s blades illuminates the critical roles of numerical and experimental activities in reducing these undesirable effects. Since blade cooling is directly related to the secondary air system, one important issue in blade burning research is to utilize the conjugate heat transfer approach. As Known, an increase of about 1% in the mass flow of air entering into the secondary air system would cause an increase of about 0.5% in the engine specific fuel consumption (SFC),... 

    Conceptual Design of a Helical Blade Turbine to be Used as an Energy Converter from Tidal Currents

    , M.Sc. Thesis Sharif University of Technology Sakhaei, Soroush (Author) ; Abbaspour, Majid (Supervisor)
    Abstract
    Darrieus turbines are one of the most widely used turbines in extracting energy from tidal currents. This study aimed to investigate the effect of utilizing helical blades and variable solidity ratio on the efficiency of Darrieus tidal turbines. For this purpose, three types of helical turbines with different solidity ratios have been designed, and computer simulation has been used to investigate the effect of the mentioned parameters on the efficiency of the Darrieus turbines. According to the simulation results, the helical turbine has less efficiency than the straight blade Darrieus turbine. The maximum hydrodynamic efficiency of the Darrieus turbine with straighted blades is 38.5,... 

    Suppression of harmonic perturbations and bifurcation control in tracking objectives of a boiler-turbine unit in power grid

    , Article Nonlinear Dynamics ; Vol. 76, Issue. 3 , 2014 , pp. 1693-1709 ; ISSN: 0924090X Moradi, H ; Vossoughi, G ; Alasty, A ; Sharif University of Technology
    Abstract
    In the presence of harmonic disturbances, boiler-turbine units may demonstrate quasi-periodic behaviour due to the occurrence of various types of bifurcation. In this article, a nonlinear model of boiler-turbine unit is considered in which drum pressure, electric output and drum water level are controlled via manipulation of valve positions for fuel, steam and feed-water flow rates. For bifurcation control in tracking problem, two controllers are designed based on gain scheduling and feedback linearization (FBL). To investigate the efficiency of control strategies, three cases are considered for desired tracking objectives (a sequence of steps, ramps/steps, and a combination of them).... 

    Experimental and numerical study of the effect of pulsating flow on the turbocharger turbine performance parameters

    , Article SAE Technical Papers ; Volume 2 , April , 2013 Tabatabaei, H ; Boroomand, M ; Taeibi Rahni, M ; Sharif University of Technology
    2013
    Abstract
    The pulsating flow in the exhaust gas of a SI engine causes an unsteady flow at the inlet to the turbocharger turbine. In a four cylinder four stroke engine, the pulse frequency varies between 20 and 200 Hz. Three dimensional pulsating flows in a vane-less turbocharger turbine of a 1.7 liters SI engine are simulated numerically and validated experimentally. Simulations are done for 720 degree engine cycle at three engine speeds. The results are shown the inlet pulsating flow has significant effects on several turbine parameters especially the inlet total pressure, the reduced mass flow rate and the efficiency. The results show a very good agreement between the three-dimensional unsteady... 

    RANS simulations of the stepped duct effect on the performance of ducted wind turbine

    , Article Journal of Wind Engineering and Industrial Aerodynamics ; Volume 145 , October , 2015 , Pages 270-279 ; 01676105 (ISSN) Zabihzade Roshan, S ; Alimirzazadeh, S ; Rad, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    With the rise in oil price and population growth, renewable energies are assumed to be the main source of energies for the next generation. Wind as a natural, eco-friendly and renewable source of energy has been at the center of concentration for decades. Recently there has been some ideas regarding the self-regulating urban wind turbines. Researchers have shown that a proper enclosure increases the wind velocity and therefore more torques can be exerted on the rotors, therefore more power can be generated. These enclosures are light and cheap, therefore they are applicable and effective. In the present study, an enclosure was modified to increase the exerted torque with implementing a step... 

    Optimisation of micro gas turbine by exergy, economic and environmental (3E) analysis

    , Article International Journal of Exergy ; Volume 7, Issue 1 , 2010 , Pages 1-19 ; 17428297 (ISSN) Mozafari, A ; Ahmadi, A ; Ehyaei, M. A ; Sharif University of Technology
    2010
    Abstract
    This research proposes a new method for optimisation of a power generation system based on exergy fuel cost and external social cost of air pollution. A thermodynamic model is provided to estimate the outlet mass flow rates of CO2, CO, NO and NO2 for a gas turbine based on maximising the first and second law efficiencies and minimising the objective function. Results show that inclusion of the external social cost of air pollution increases the optimum excess air ratio if temperature constraint due to metallurgical consideration is disregarded. Otherwise external social cost of air pollution is independent of optimised conditions  

    Experimental investigation of the leadingedge roughness on the boundary layer of a plunging airfoil

    , Article 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010, 19 September 2010 through 24 September 2010, Nice ; Volume 2 , 2010 , Pages 1582-1588 ; 9781617820496 (ISBN) Rasi Marzabadi, F ; Soltani, M. R ; Masdari, M ; Sharif University of Technology
    2010
    Abstract
    Extensive experimental investigation was conducted to study the effect of leading-edge roughness on the state of the boundary layer of a wind turbine blade section. The application of surface grit roughness simulates surface irregularities that occur on the wind turbine blades. The measurements were done using multiple hot-film sensors and surface pressure transducers in both static and plunging oscillation of the airfoil. Frequency domain analysis was used to determine the state of the unsteady boundary layer  

    Measurements of velocity field in the wake of an oscillating wind turbine blade

    , Article Aeronautical Journal ; Volume 114, Issue 1158 , August , 2010 , Pages 493-504 ; 00019240 (ISSN) Soltani, M. R ; Mahmoudi, M ; Sharif University of Technology
    2010
    Abstract
    A series of tests were carried out to study the unsteady wake behaviour behind an aerofoil which is a section of a wind-turbine blade. The model is oscillated in pitch about its quarter chord axis at various reduced frequencies, amplitudes, and mean angles-of-attack. Instantaneous and mean velocity profiles were obtained using total and static pressure at 35 vertically aligned points behind the aerofoil via two similar rakes. The rakes were located at a distance of 1.5 chord length behind the model. An estimation of the real time and average variations of the linear momentum deficit during the oscillation cycle is obtained and has been compared with the corresponding static data. The results... 

    Hollow blades for small wind turbines operating at high atitudes

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Volume 138, Issue 6 , 2016 ; 01996231 (ISSN) Pourrajabian, A ; Amir Nazmi Afshar, P ; Mirzaei, M ; Ebrahimi, R ; Wood, D. H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    Since the air density reduces as altitude increases, operation of small wind turbines (SWTs), which usually have no pitch adjustment, remains challenging at high altitudes due largely to the reduction of starting aerodynamic torque. By reducing the moment of inertia through the use of hollow blades, this study aims to speed up the starting while maintaining the structural integrity of the blades and high output power. A horizontal axis turbine with hollow blades was designed for two sites in Iran with altitude of 500 m and 3000 m. The design variables are the distributions of the chord, twist, and shell thickness and the improvement of output power and starting are the design goals.... 

    Entropy minimization in turbine cascade using continuous adjoint formulation

    , Article Engineering Optimization ; Volume 48, Issue 2 , 2016 , Pages 213-230 ; 0305215X (ISSN) Zeinalpour, M ; Mazaheri, K ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    A complete continuous adjoint formulation is presented here for the optimization of the turbulent flow entropy generation rate through a turbine cascade. The adjoint method allows one to have many design variables, but still afford to compute the objective function gradient. The new adjoint system can be applied to different structured and unstructured grids as well as mixed subsonic and supersonic flows. For turbulent flow simulation, the k-ω shear-stress transport turbulence model and Roe's flux function are used. To ensure all possible shape models, a mesh-point method is used for design parameters, and an implicit smoothing function is implemented to avoid the generation of non-smoothed... 

    Modal-based damage identification for the nonlinear model of modern wind turbine blade

    , Article Renewable Energy ; Volume 94 , 2016 , Pages 391-409 ; 09601481 (ISSN) Rezaei, M. M ; Behzad, M ; Moradi, H ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper, the modal-based indices are used in damage identification of the wind turbine blade. In contrast of many of previous researches, the geometric nonlinearity due to the large structural deformation of the modern wind turbines blade is considered. In the first step, the finite element model (FEM) of the rotating blade is solved to obtain the modal features of the deformed structure under operational aerodynamic loading. Next, the accuracy and efficiency of the various modal-based damage indices including the frequency, mode shape, curvature of mode shape, modal assurance, modal strain energy (MSE) and the difference of indices (between the intact and damaged blades) are... 

    Optimization of a regenerative gas turbine engine with isothermal heat addition with the genetic algorithm

    , Article Proceedings of the ASME Turbo Expo, 8 June 2009 through 12 June 2009, Orlando, FL ; Volume 4 , 2009 , Pages 265-274 ; 9780791848852 (ISBN) Haghighi, E ; Borzou, B ; Ghahremani, A. R ; Shafii, M. B ; Sharif University of Technology
    Abstract
    The use of advanced cycles to take advantage of the gas turbine's thermodynamic characteristics has received increasing attention in recent years. These cycles have been developed for large scale power generation. Due to the powerful abilities of bio-inspired computing techniques such as Genetic Algorithm in locating the optimal (or near optimal) solutions to a given optimization problem, they are widely utilized for determining the parameters of different engineering systems in order to meet the specified performance objectives for a given problem. In order to illustrate the performance of one of these techniques, development and application of it for an engineering problem is presented. In... 

    Gas turbine oxidation life assessment and monitoring

    , Article Oxidation of Metals ; Volume 90, Issue 5-6 , 2018 , Pages 691-711 ; 0030770X (ISSN) Mazaheri, F ; Alizadeh, M ; Akheratdoost, H ; Khaledi, H ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Gas turbine hot-section parts can be very expensive components with a finite lifetime. Their durability is strongly dependent on the operating service conditions which control the maintenance intervals and associated expenses. Blade damage is the most frequent reason for failures in gas turbine engines and also oxidation is one of the most critical degradation mechanisms when the power system operates in partially loading condition. This paper describes the methodology of oxidation life assessment for uncoated and coated blades with various metallic coatings in the first stage of a typical gas turbine engine. The resultant weight-change curves were validated by comparing them with the... 

    Nonlinear kinematics analysis and internal resonance of wind turbine blade with coupled flapwise and edgewise vibration modes

    , Article Journal of Sound and Vibration ; Volume 435 , 2018 , Pages 390-408 ; 0022460X (ISSN) Karimi, B ; Moradi, H ; Sharif University of Technology
    Academic Press  2018
    Abstract
    Environmental issues and energy crisis have caused the world attention to the renewable energies; especially the wind power, since they have low cost and high reliability. To achieve higher capacity, wind turbines have increased in their size over the years. However, the large size of the modern turbines has exacerbated the problem of vibrations, which results in lower efficiency and power generation. Because of the large deformations, the conventional linear theories cannot model the blades accurately, due to the importance of nonlinear effects in large scale wind turbines. In this research, a nonlinear kinematic model of the wind turbine blade is developed using the Hamilton's principle.... 

    Component and mode models for the short-term scheduling of combined-cycle units

    , Article IEEE Transactions on Power Systems ; Volume 24, Issue 2 , 2009 , Pages 976-990 ; 08858950 (ISSN) Liu, C ; Shahidehpour, M ; Li, Z ; Fotuhi Firuzabad, M ; Sharif University of Technology
    2009
    Abstract
    We propose a component model for the scheduling of combined-cycle gas turbine (CCGT) units by mixed-integer programming (MIP) in which combustion turbines (CTs) and steam turbines (STs) are modeled as individual units. The hourly schedule of CCGT based on the component model is compared with that of the mode model. The modeling of modes, which includes a combination of CTs and STs, would require certain approximations for representing fuel input-power output curves, ramping rate limits, minimum operating time limits, etc. The approximations can result in sub-optimal schedules. Furthermore, the commitment and dispatch of CCGTs based on the mode model will require a real-time dispatch to... 

    Control performance enhancement of gas turbines in the minimum command selection strategy

    , Article ISA Transactions ; 2020 Eslami, M ; Banazadeh, A ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2020
    Abstract
    Three novel methods, named α, ζ and ϵ, are suggested in this paper to recover the performance loss during switching in the gas turbine control systems. The Minimum Command Selection (MCS) in the gas turbine control systems prompts this performance loss. Any step towards more productivity with less aging factors have a great impact on the gas turbine's lifetime profit and vice versa. Although many hardware upgrades have been studied and applied to accomplish this, in many cases a low-risk manipulation in the software may yield equivalent achievement. State of the art gas turbine control systems are supposed to handle various forms of disturbances, several operation modes and relatively high...