Loading...
Search for: textures
0.008 seconds
Total 155 records

    Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints

    , Article Materials Science and Engineering A ; Vol. 608, issue , 2014 , pp. 35-45 ; ISSN: 09215093 Sarkari Khorrami, M ; Mostafaei, M. A ; Pouraliakbar, H ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In this work, examinations on the microstructure and mechanical properties of plain carbon steel and AISI 430 ferritic stainless steel dissimilar welds are carried out. Welding is conducted in both autogenous and using ER309L austenitic filler rod conditions through gas tungsten arc welding process. The results indicate that fully-ferritic and duplex ferritic-martensitic microstructures are formed for autogenous and filler-added welds, respectively. Carbide precipitation and formation of martensite at ferrite grain boundaries (intergranular martensite) as well as grain growth occur in the heat affected zone (HAZ) of AISI 430 steel. It is found that weld heat input can strongly affect grain... 

    Effect of high energy ball milling on compressibility and sintering behavior of alumina nanoparticles

    , Article Ceramics International ; Volume 38, Issue 4 , May , 2012 , Pages 2627-2632 ; 02728842 (ISSN) Eskandari, A ; Aminzare, M ; Razavi Hesabi, Z ; Aboutalebi, S. H ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The effect of high-energy ball milling on the textural evolution of alumina nanopowders (compaction response, sinter-ability, grain growth and the degree of agglomeration) during post sintering process is studied. The applied pressure required for the breakage of the agglomerates (P y) during milling was estimated and the key elements of compressibility (i.e. critical pressure (P cr) and compressibility (b)) were calculated. Based on the results, the fracture point of the agglomerates decreased from 150 to 75 MPa with prolonged milling time from 3 to 60 min. Furthermore, the powders were formed by different shaping methods such as cold isostatic press (CIP) and uniaxial press (UP) to better... 

    Producing Ti-6Al-4V/TiC composite with good ductility by vacuum induction melting furnace and hot rolling process

    , Article Materials and Design ; Volume 32, Issue 10 , December , 2011 , Pages 5010-5014 ; 02641275 (ISSN) Rastegari, H. A ; Asgari, S ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, Ti-6Al-4V/TiC composite was fabricated by VIM furnace and graphite crucible. X-ray diffraction analysis and EDS techniques were used to identify the phases in the material. Microstructure characteristics of the Ti-6Al-4V/TiC composite were evaluated by means of optical microscopy. The tensile test was performed at room temperature after hot-rolling of the samples in the beta phase field. The results revealed that at different melting times, three kinds of precipitates are formed in the microstructure including grain boundary, eutectic and transgranular precipitates. The size of transgranular precipitates was significantly larger than that of the other two types of carbides and... 

    Unsupervised estimation of conceptual classes for semantic image annotation

    , Article 2011 19th Iranian Conference on Electrical Engineering, ICEE 2011, 17 May 2011 through 19 May 2011 ; May , 2011 ; 9789644634284 (ISBN) Teimoori, F ; Esmaili, H ; Shirazi, A. A. B ; Sharif University of Technology
    2011
    Abstract
    A probabilistic formulation for semantic image annotation and retrieval is proposed. Annotation and retrieval are posed as classification problems where each class is defined as the group of database images labeled with a common semantic label. It is shown that, by establishing this one-to-one correspondence between semantic labels and semantic classes, a minimum probability of error annotation and retrieval are feasible with algorithms that are 1) conceptually simple and 2) computationally efficient. In this article, a content-based image retrieval and annotation architecture is proposed. Its attitude is decreasing the semantic gap by partitioning the image to its semantic regions and using... 

    Influence of annealing treatment on micro/macro-texture and texture dependent magnetic properties in cold rolled FeCo-7.15V alloy

    , Article Journal of Magnetism and Magnetic Materials ; Volume 378 , March , 2015 , Pages 253-260 ; 03048853 (ISSN) Hasani, S ; Shamanian, M ; Shafyei, A ; Behjati, P ; Nezakat, M ; Fathi Moghaddam, M ; Szpunar, J. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The influence of annealing treatment on macro- and micro-texture of cold-rolled FeCo-7.15V ferro-magnetic ultra-thin foils were studied. The microstructural studies performed by field emission scanning electron microscope (FE-SEM) showed the formation of paramagnetic precipitations ((Fe, Co)3V) during annealing. During cold rolling of the FeCo-7.15V magnet, the texture components of type (113)[110], (001)[110], (111)[110], and (111)[121], all related to α and γ-fibers were formed. X-ray diffraction (XRD) and local texture measurements performed by electron backscatter diffraction (EBSD) were made on the annealed samples. Both methods revealed that the recrystallized samples have texture... 

    A systematic review of the effect of foot orthoses and shoe characteristics on balance in healthy older subjects

    , Article Prosthetics and Orthotics International ; Volume 40, Issue 2 , 2016 , Pages 170-181 ; 03093646 (ISSN) Aboutorabi, A ; Bahramizadeh, M ; Arazpour, M ; Fadayevatan, R ; Farahmand, F ; Curran, S ; Hutchins, S. W ; Sharif University of Technology
    SAGE Publications Inc  2016
    Abstract
    Background: Foot orthoses are used to optimize lower extremity function and can improve postural stability by enhancing the afferent somatosensory feedback available to the central nervous system. Objective: The aim of this review was to evaluate the effect of foot orthoses on balance control in older subjects. Study design: Systematic review. Methods: The search strategy was based on the Population Intervention Comparison Outcome method. A search was performed in PubMed, Science Direct, Google Scholar, and ISI Web of Knowledge databases by using selected keywords. A total of 22 articles were selected for final evaluation. Results: The results demonstrated that older people should be advised... 

    Determination of parabolic trough solar collector efficiency using nanofluid:a comprehensive numerical study

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Volume 139, Issue 5 , 2017 ; 01996231 (ISSN) Khakrah, H ; Shamloo, A ; Hannani, S. K ; Sharif University of Technology
    Abstract
    Due to significant reduction in fossil fuel sources, several researches have been conducted recently to explore modern sources of renewable energy. One of the major fields in the category of renewable energy harnessing devices is parabolic trough solar collector (PTC). Several parameters have effect on the overall efficiency of the PTCs. As the effect of these parameters is coupled to each other, a comprehensive investigation is necessary. In the present study, a numerical analysis is performed to examine the efficiency of PTCs via variation of several governing parameters (e.g., wind velocity magnitude, nanoparticles volume fraction, inlet temperature, and reflector's orientation). A... 

    Experimental investigation and crystal plasticity-based prediction of AA1050 sheet formability

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 231, Issue 8 , 2017 , Pages 1341-1349 ; 09544054 (ISSN) Hajian, M ; Assempour, A ; Akbarzadeh, A ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    This article presents a crystal plasticity methodology to evaluate the AA1050 sheet formability. In order to determine the orientation distribution of the crystals, initial texture of the material is measured through X-ray diffraction technique. Also, the stress-strain behavior of the material is determined by performing tensile test. In order to simulate the path-dependent crystal plasticity behavior of body-centered cubic crystal structures, a UMAT subroutine that employs the rate-dependent crystal plasticity model along with the power law hardening was developed previously by the authors and linked to the finite element software ABAQUS. This subroutine was further developed to simulate... 

    Mechanical and microstructure properties of deformed Al-Al2O3 nanocomposite at elevated temperature

    , Article Journal of Materials Research ; Volume 32, Issue 6 , 2017 , Pages 1118-1128 ; 08842914 (ISSN) Ezatpour, H. R ; Sajjadi, S. A ; Chaichi, A ; Ebrahimi, G. R ; Sharif University of Technology
    Abstract
    Hot isotherm compression tests were performed in temperature range of 350-500 °C and at strain rates of 0.0005 to 0.5 s-1 for Al6061 alloy reinforced with alumina nanoparticles. Effect of deformation parameters and optimal conditions for hot working this nanocomposite were comprehended thoroughly via hot working data analyses, electron microscopy images, and X-ray diffractograms. The results indicated the severity of hot deformation process and an increase in the activation energy to 320 kJ/mol due to the addition of nanoparticles. Dynamic recovery (DRV) was considered as the individual determinative softening mechanism during hot deformation of this nanocomposite, and no sign of dynamic... 

    Estimating the drainage rate from surface soil moisture drydowns: application of DfD model to in situ soil moisture data

    , Article Journal of Hydrology ; Volume 565 , 2018 , Pages 489-501 ; 00221694 (ISSN) Jalilvand, E ; Tajrishy, M ; Brocca, L ; Massari, C ; Ghazi Zadeh Hashemi, S ; Ciabatta, L ; Sharif University of Technology
    Abstract
    The large heterogeneity in soil surface conditions makes it impracticable to obtain reliable estimates of soil hydraulic parameters for areas larger than few squared kilometers. However, identifying these parameters on a global scale is essential for many hydrological and climatic applications. In this study, a new approach named Drainage from Drydown (DfD) is proposed to estimate the coefficients of drainage using soil moisture observations. DfD firstly selects multiple drydown events when surface runoff and evapotranspiration rates are negligible compared to the drainage rate. Secondly, by inverting the soil water balance equation, the drainage coefficients are obtained. Synthetic... 

    Enhanced recovery and recycling of catalyst by post-impregnation of γ-Al2O3 with 12-tungstophosphoric acid for esterification reaction

    , Article Canadian Journal of Chemical Engineering ; Volume 96, Issue 5 , 2018 , Pages 1176-1184 ; 00084034 (ISSN) Nazari, P ; Rahman Setayesh, S ; Sharif University of Technology
    Wiley-Liss Inc  2018
    Abstract
    12-tungstophosphoric acid, polyoxometalate with Keggin structure, and γ-Al2O3 were synthesized. Loading of 12-tungstophosphoric acid (HPW) on γ-Al2O3 was performed by the post-impregnation method. The catalysts were characterized by XRD, SEM, FTIR, BET, and DRS techniques. According to the pertinent observation, using the post-impregnation method promises the stability of polyoxometalate Keggin structure after loading on γ-Al2O3 support. The stability of 20 %HPW/Al2O3 was also confirmed by a leaching test. Textural characterization demonstrates that HPW on the γ-Al2O3 had a much larger surface area as compared with the pure HPW. The 20 %HPW/Al2O3 exhibited roughly high activity toward an... 

    The influence of welding polarity on mechanical properties, microstructure and residual stresses of gas tungsten arc welded AA5052

    , Article International Journal of Advanced Manufacturing Technology ; Volume 105, Issue 7-8 , 2019 , Pages 3397-3409 ; 02683768 (ISSN) Sarmast, A ; Serajzadeh, S ; Sharif University of Technology
    Springer  2019
    Abstract
    The effect of welding current and polarity, i.e. AC and DCEN, on imposed thermal cycles, mechanical properties, microstructural events and residual stresses was investigated in GTA welding of AA5052. A three-dimensional thermo-mechanical model was utilized to evaluate thermal responses and residual stresses distribution in the weldments. Tensile testing and hardness measurements were also conducted to study the effect of welding polarity on the mechanical properties of components. Microstructural observations utilizing optical microscopy were carried out to assess the microstructural evolutions. The results show that wide varieties of microstructures are produced in DCEN sample from cells at... 

    Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets

    , Article Journal of Manufacturing Processes ; Volume 47 , 2019 , Pages 310-323 ; 15266125 (ISSN) Amelirad, O ; Assempour, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Effects of the grain size on the forming limits of stainless steel 316 L sheets are investigated using crystal plasticity finite element method (CPFEM) by modeling of all grains. For preparing simulation models with different grain morphology, a grain generator code is developed. Using data from metallographic images, texture, and material properties, the developed code can be used for preprocessing of CPFEM. In order to extract mechanical and metallurgical data required for CPFEM, some experiments are carried out on different samples. Moreover, for the purpose of implementing the crystal plasticity formulations, an Abaqus user material subroutine (UMAT) is developed. Concerning the... 

    Droplet condensation and jumping on structured superhydrophobic surfaces

    , Article International Journal of Heat and Mass Transfer ; Volume 134 , 2019 , Pages 680-693 ; 00179310 (ISSN) Ashrafi Habibabadi, A ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A complete cycle of droplet nucleation, growth, coalescence and jumping on different textured hydrophobic and superhydrophobic surfaces is studied for the first time, using a 2-D double distribution function thermal lattice Boltzmann method. First, droplet nucleation mechanism on smooth and rough surfaces is studied in detail. The results reveal the presence of cooled vapor layer instability in the condensation on completely smooth surfaces. However, on the rough surfaces and near the roughness a completely different mechanism is observed and the nucleation occurs on the roughness wedges. Also, the condensation on different textured surfaces with nominal contact angles θa=90°,120°,155° is... 

    Monitoring the behaviour of anionic polymer-anionic surfactant stabilized foam in the absence and presence of oil: Bulk and bubble-scale experimental analyses

    , Article Canadian Journal of Chemical Engineering ; Volume 97, Issue S1 , 2019 , Pages 1386-1398 ; 00084034 (ISSN) Veyskarami, M ; Hossein Ghazanfari, M ; Shafiei, Y ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    The present study aims at monitoring the bulk and bubble-scale behaviour of anionic polyacrylamide-sodium dodecyl sulphate stabilized foam in the absence and presence of oil. Dynamic stability tests provided results indicating that polymer increases the foam dynamic stability and decreases the drainage. Oil slows down the drainage rate of polymer-surfactant foam. In the absence of oil, foam is drained gradually/smoothly whereas remarkable fluctuations are evident in drainage graphs when oil is present. The Hele-Shaw cell was employed to conduct bubble-scale as well as statistical analyses on how foam texture is influenced by a polymer-surfactant system and hydrocarbon. Bubble-scale analyses,... 

    DeePore: A deep learning workflow for rapid and comprehensive characterization of porous materials

    , Article Advances in Water Resources ; Volume 146 , 2020 Rabbani, A ; Babaei, M ; Shams, R ; Wang, Y. D ; Chung, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    DeePore2 is a deep learning workflow for rapid estimation of a wide range of porous material properties based on the binarized micro–tomography images. By combining naturally occurring porous textures we generated 17,700 semi–real 3–D micro–structures of porous geo–materials with size of 2563 voxels and 30 physical properties of each sample are calculated using physical simulations on the corresponding pore network models. Next, a designed feed–forward convolutional neural network (CNN) is trained based on the dataset to estimate several morphological, hydraulic, electrical, and mechanical characteristics of the porous material in a fraction of a second. In order to fine–tune the CNN design,... 

    Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted

    , Article Optical and Quantum Electronics ; Volume 52, Issue 5 , 2020 Shakoury, R ; Arman, A ; Ţălu, Ş ; Dastan, D ; Luna, C ; Rezaee, S ; Sharif University of Technology
    Springer  2020
    Abstract
    The micromorphology and semiconductor properties of TiO2 thin films growth using different ion beam energies have been finely analyzed using atomic force microscopy (AFM), ultra-violet visible (UV–visible) spectroscopy and stereometric analysis. The AFM measurements and surface stereometric analysis are essential for the accurate characterization of the 3-D surface topographic features and allow the determination of the 3-D surface texture parameters that influence the optical properties of the material. The samples were divided into four groups to discuss the obtained results, according to the ion beam energy applied in the sample preparation. The results obtained from experimental... 

    Static and dynamic behavior of foam stabilized by modified nanoparticles: Theoretical and experimental aspects

    , Article Chemical Engineering Research and Design ; Volume 158 , 2020 , Pages 114-128 Suleymani, M ; Ashoori, S ; Ghotbi, C ; Moghadasi, J ; Kharrat, R ; Sharif University of Technology
    Institution of Chemical Engineers  2020
    Abstract
    Gas flooding is a practical secondary scenario for enhanced oil recovery. Channeling and fingering of the injected gas are the major problems facing this technique. These challenges can be mitigated by the injection of gas as foam. However, foam stability influences the overall efficiency of the process, which could be improved by nanoparticles (NPs). This work provides a theoretical and experimental analysis of the NPs wettability effects on foam behavior, in both static and dynamic states. The treated calcite (CaCO3) NPs along with a cationic surfactant (HTAB) were used for this purpose. By comparison of theoretical and experimental data, it was shown that the foam stability in the... 

    Investigation of flexural capacity of concrete containing liquid silicone rubber

    , Article Shock and Vibration ; Volume 2021 , 2021 ; 10709622 (ISSN) Khaloo, A ; Parvin Darabad, Y ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    Despite the great use of concrete, tensile strength and low flexibility and brittleness are its weaknesses. Many solutions have been provided to eliminate the mentioned defects. In order to increase the flexibility of concrete in previous studies, crushed rubber tire particles have been added to concrete. Recycling car tires helps the environment and makes concrete much more flexible than regular concrete. In this research, silicone rubber has been replaced by 0%, 2%, 4%, 8%, 12.5%, 25%, and 50% of mineral aggregates. This rubber was initially in liquid form, which, after mixing with ordinary concrete, dispersed into the concrete texture and formed a uniform mixture, and this liquid rubber... 

    Improvement toughness of SiC ceramic by adding Cr2O3 and annealing process

    , Article Journal of the Australian Ceramic Society ; Volume 57, Issue 4 , May , 2021 , Pages 1097-1106 ; 25101560 (ISSN) Khodaei, M ; Yaghobizadeh, O ; Ehsani, N ; Baharvandi, H. R ; Bayati, M. B ; Esmaeeli, S ; Javi, H ; Sharif University of Technology
    Springer  2021
    Abstract
    In this research, the effect of different amounts of Cr2O3 (2.5, 5, 7.5, and 10 wt.%) and sintering temperature (1850, 1900, and 1950 °C) on the sinterability and mechanical properties of liquid-phase sintered SiC-matrix composites was studied. First, raw materials were ground for 3 h using a planetary mill whose rotational speed was 180 rpm. The process of pressing the samples was completed using uniaxial pressing with the applied pressure of 90 MPa. Finally, the samples were sintered under an argon atmosphere at various temperatures for 1.5 h. In the end, the best sintered sample was annealed at 2000°C for 2 h. The phases, microstructure, and chemical composition of the samples were...