Loading...
Search for: test-case
0.007 seconds
Total 51 records

    Planar diffraction analysis of homogeneous and longitudinally inhomogeneous gratings based on legendre expansion of electromagnetic fields

    , Article IEEE Transactions on Antennas and Propagation ; Volume 54, Issue 12 , 2006 , Pages 3686-3694 ; 0018926X (ISSN) Chamanzar, M. R ; Mehrany, K ; Rashidian, B ; Sharif University of Technology
    2006
    Abstract
    Planar grating diffraction analysis based on Legendre expansion of electromagnetic fields is reported. In contrast to conventional RCWA in which the solution is obtained using state variables representation of the coupled wave amplitudes; here, the solution is expanded in terms of Legendre polynomials. This approach, without facing the problem of numerical instability and inevitable round off errors, yields well-behaved algebraic equations for deriving diffraction efficiencies, and can be employed for analysis of different types of gratings. Thanks to the recursive properties of Legendre polynomials, for longitudinally inhomogeneous gratings, wherein differential equations with non-constant... 

    Generating test as a web service (TaaWS) through a method-based attribute grammar

    , Article International Journal on Software Tools for Technology Transfer ; Volume 24, Issue 4 , 2022 , Pages 511-527 ; 14332779 (ISSN) Habibi, E ; Mirian Hosseinabadi, S. H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Service-Oriented Architecture (SOA) is a technology for designing software systems. By using this architecture, new challenges appeared for software testing. Functional testing of services assures the quality of service-oriented applications. Herein, we introduce a new test web service named TaaWS (Test as a Web Service), which is a combination of both online testing and testing as a service to overcome SOA testing challenges. Each web service can have its test web service. Thus, the consumer can call TaaWS to assure the accuracy of the web services used in the application. TaaWS consists of semantic and structural test cases extracted from the extended-attribute grammar of the web service... 

    An efficient method for nonlinear aeroelasticy of slender wings

    , Article Nonlinear Dynamics ; Volume 67, Issue 1 , 2012 , Pages 659-681 ; 0924090X (ISSN) Shams, S ; Sadr, M. H ; Haddadpour, H ; Sharif University of Technology
    2012
    Abstract
    This paper aims the nonlinear aeroelastic analysis of slender wings using a nonlinear structural model coupled with the linear unsteady aerodynamic model. High aspect ratio and flexibility are the specific characteristic of this type of wings. Wing flexibility, coupled with long wingspan can lead to large deflections during normal flight operation of an aircraft; therefore, a wing in vertical/forward-afterward/torsional motion using a third-order form of nonlinear general flexible Euler-Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic strip theory based on the Wagner function is used for determination of aerodynamic loading on the wing. Combining these... 

    Implementing a high-order accurate implicit operator scheme for solving steady incompressible viscous flows using artificial compressibility method

    , Article International Journal for Numerical Methods in Fluids ; Volume 66, Issue 8 , July , 2011 , Pages 939-962 ; 02712091 (ISSN) Hejranfar, K ; Khajeh Saeed, A ; Sharif University of Technology
    2011
    Abstract
    This paper uses a fourth-order compact finite-difference scheme for solving steady incompressible flows. The high-order compact method applied is an alternating direction implicit operator scheme, which has been used by Ekaterinaris for computing two-dimensional compressible flows. Herein, this numerical scheme is efficiently implemented to solve the incompressible Navier-Stokes equations in the primitive variables formulation using the artificial compressibility method. For space discretizing the convective fluxes, fourth-order centered spatial accuracy of the implicit operators is efficiently obtained by performing compact space differentiation in which the method uses block-tridiagonal... 

    Simulation of heat transfer in nanoscale flow using molecular dynamics

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 1563-1568 ; 9780791854501 (ISBN) Darbandi, M ; Abbasi, H. R ; Sabouri, M ; Khaledi Alidusti, R ; Sharif University of Technology
    2010
    Abstract
    We investigate heat transfer between parallel plates separated by liquid argon using two-dimensional molecular dynamics (MD) simulations incorporating with 6-12 Lennard-Jones potential between molecule pairs. In molecular dynamics simulation of nanoscale flows through nanochannels, it is customary to fix the wall molecules. However, this approach cannot suitably model the heat transfer between the fluid molecules and wall molecules. Alternatively, we use thermal walls constructed from the oscillating molecules, which are connected to their original positions using linear spring forces. This approach is much more effective than the one which uses a fixed lattice wall modeling to simulate the... 

    A new algorithm for fault location on transmission lines

    , Article 2009 IEEE Power and Energy Society General Meeting, PES '09, Calgary, AB, 26 July 2009 through 30 July 2009 ; 2009 ; 9781424442416 (ISBN) Shiroei, M ; Daniar, S ; Akhbari, M ; Sharif University of Technology
    IEEE  2009
    Abstract
    In this paper, a new algorithm for fault detection/location on transmission line based on linear state estimation is presented. The proposed technique uses phasor measurements from PMU's. Fault location and voltage of fault point are added as the new state variables in a linear state estimator based on PMU data. In addition, by using the ability of bad data identification in the state estimation, a new scheme for fault location and identification of faulted transmission line is proposed. For test and validation of the proposed algorithm, simulation results on a six bus test case are presented. ©2009 IEEE  

    Topological analysis of multi-phase attacks using expert systems

    , Article Journal of Information Science and Engineering ; Volume 24, Issue 3 , 2008 , Pages 743-767 ; 10162364 (ISSN) Shahriari, H. R ; Ganjisaffar, Y ; Jalili, R ; Habibi, J ; Sharif University of Technology
    2008
    Abstract
    With the increasing number and complexity of network attacks, the demand for automatic vulnerability analysis tools has increased. The prerequisite of making these tools is to have a formal and precise model of network configurations and vulnerabilities. Utilizing this model, network administrators can analyze the effects of vulnerabilities on the network and complex attack scenarios can be detected before happening. In this paper, we present a general logic-based framework for modeling network configurations and topologies. Then, a number of important and wide-spread network vulnerabilities are modeled as general inference rules based on the framework definitions. We implemented the... 

    Towards simulation of 3D nonlinear high-speed vessels motion

    , Article Ocean Engineering ; Volume 36, Issue 3-4 , 2009 , Pages 256-265 ; 00298018 (ISSN) Panahi, R ; Jahanbakhsh, E ; Seif, M. S ; Sharif University of Technology
    2009
    Abstract
    A numerical simulation algorithm based on the finite volume discretisation is presented for analyzing ship motions. The algorithm employs a fractional step method to deal with the coupling between the pressure and velocity fields. The free surface capturing is fulfilled by using a volume of fluid method in which the interface between the liquid (water) and gas (air) phases are computed by solving a scalar transport equation for the volume fraction of the liquid phase. The computed velocity field is employed to evaluate the acting forces and moments on the vessel. Using the strategy of boundary-fitted body-attached mesh and calculating all six degrees-of-freedom of motion in each time step,... 

    Effect of different geometries in simulation of 3D viscous flow in francis turbine runners

    , Article Scientia Iranica ; Volume 16, Issue 4 B , 2009 , Pages 363-369 ; 10263098 (ISSN) Firoozabadi, B ; Dadfar, R ; Pirali, A. P ; Ahmadi, G ; Sharif University of Technology
    2009
    Abstract
    Overall turbine analysis requires large CPU time and computer memory, even in the present days. As a result, choosing an appropriate computational domain accompanied by a suitable boundary condition can dramatically reduce the time cost of computations. This work compares different geometries for numerical investigation of the 3D flow in the runner of a Francis turbine, and presents an optimum geometry with least computational effort and desirable numerical accuracy. The numerical results are validated with a GAMM Francis Turbine runner, which was used as a test case (GAMM workshop on 3D computation of incompressible internal flows, 1989) in which the geometry and detailed best efficiency... 

    Modelling of power-law fluid flow through porous media using smoothed particle hydrodynamics

    , Article Transport in Porous Media ; Volume 74, Issue 3 , 2008 , Pages 331-346 ; 01693913 (ISSN) Vakilha, M ; Manzari, M. T ; Sharif University of Technology
    2008
    Abstract
    The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses on a shear-thinning power-law model (n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved to evaluate validity of Darcy's law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results show that the proposed algorithm can... 

    Nonlinear aeroelastic response of slender wings based on Wagner function

    , Article Thin-Walled Structures ; Volume 46, Issue 11 , 2008 , Pages 1192-1203 ; 02638231 (ISSN) Shams, Sh ; Sadr Lahidjani, M. H ; Haddadpour, H ; Sharif University of Technology
    2008
    Abstract
    This paper presents a method for nonlinear aeroelastic analysis of Human Powered Aircraft (HPA) wings. In this type of aircraft there is a long, highly flexible wing. Wing flexibility, coupled with long wing span can lead to large deflections during normal flight operation; therefore, a wing in vertical and torsional motion using the second-order form of nonlinear general flexible Euler-Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic theory based on Wagner function is used for determination of aerodynamic loading on the wing. Combining these two types of formulations yields the nonlinear integro-differentials aeroelastic equations. Using the Galerkin's...