Loading...
Search for: relative-standard-deviations
0.01 seconds
Total 52 records

    Optimization of dispersive liquid-liquid microextraction and improvement of detection limit of methyl tert-butyl ether in water with the aid of chemometrics

    , Article Journal of Chromatography A ; Volume 1217, Issue 45 , November , 2010 , Pages 7017-7023 ; 00219673 (ISSN) Karimi, M ; Sereshti, H ; Samadi, S ; Parastar, H ; Sharif University of Technology
    2010
    Abstract
    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry-selective ion monitoring (GC-MS-SIM) was applied to the determination of methyl tert-butyl ether (MTBE) in water samples. The effect of main parameters affecting the extraction efficiency was studied simultaneously. From selected parameters, volume of extraction solvent, volume of dispersive solvent, and salt concentration were optimized by means of experimental design. The statistical parameters of the derived model were R 2=0.9987 and F=17.83. The optimal conditions were 42.0μL for extraction solvent, 0.30mL for disperser solvent and 5% (w/v) for sodium chloride. The calibration linear range... 

    Novel unbreakable solid-phase microextraction fiber by electrodeposition of silica sol-gel on gold

    , Article Journal of Separation Science ; Volume 34, Issue 22 , 2011 , Pages 3246-3252 ; 16159306 (ISSN) Bagheri, H ; Sistani, H ; Ayazi, Z ; Sharif University of Technology
    Abstract
    A new technique for preparation of an unbreakable solid-phase microextraction (SPME) fiber, using sol-gel technology is developed. Primarily, an ultrathin two-dimensional intermediate film was prepared by hydrolysis of 3-(trimethoxysilyl)-1-propanthiol self-assembled monolayer grafted onto gold, then a stationary phase by electrodeposition of 3-(trimethoxysilyl) propylmethacrylate as a precursor, tetramethyl orthosilicate and polyethylene glycol as a coating polymer was produced. The scanning electron microscopy images revealed that the new fiber exhibits a rather porous and homogenous surface. The thermal stability of the fabricated fiber was investigated by thermogravimetric analysis. The... 

    Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples

    , Article Analytica Chimica Acta ; Volume 716 , 2012 , Pages 34-39 ; 00032670 (ISSN) Bagheri, H ; Aghakhani, A ; Baghernejad, M ; Akbarinejad, A ; Sharif University of Technology
    2012
    Abstract
    A novel solid phase microextraction (SPME) fiber was fabricated by electrospinning method in which a polymeric solution was converted to nanofibers using high voltages. A thin stainless steel wire was coated by the network of polymeric nanofibers. The polymeric nanofiber coating on the wire was mechanically stable due to the fine and continuous nanofibers formation around the wire with a three dimensional structure. Polyamide (nylon 6), due to its suitable characteristics was used to prepare the unbreakable SPME nanofiber. The scanning electron microscopy (SEM) images of this new coating showed a diameter range of 100-200nm for polyamide nanofibers with a homogeneous and porous surface... 

    Novel nanofiber coatings prepared by electrospinning technique for headspace solid-phase microextraction of chlorobenzenes from environmental samples

    , Article Analytical Methods ; Volume 3, Issue 6 , Apr , 2011 , Pages 1284-1289 ; 17599660 (ISSN) Bagheri, H ; Aghakhani, A ; Sharif University of Technology
    2011
    Abstract
    Novel unbreakable solid phase microextraction (SPME) fiber coatings were fabricated by electrospinning method in which the polymeric solution was converted to nanofibers using high voltages. Four different polymers, polyurethane (PU), polycarbonate (PC), polyamide (PA) and polyvinyl chloride (PVC) were prepared as the fiber coatings on thin stainless steel wires. The extraction efficiencies of new coatings were investigated by headspace solid-phase microextraction (HS-SPME) of some environmentally important chlorobenzenes from aqueous samples followed by gas chromatography-mass spectrometry (GC-MS) analysis. Among them, PU showed a prominent efficiency. Effects of coating time and polymer... 

    Miniaturized salting-out liquid-liquid extraction in a coupled-syringe system combined with HPLC-UV for extraction and determination of sulfanilamide

    , Article Talanta ; Vol. 121 , April , 2014 , pp. 199-204 ; ISSN: 00399140 Sereshti, H ; Khosraviani, M ; Sadegh Amini-Fazl, M ; Sharif University of Technology
    Abstract
    In salting-out liquid-liquid extraction (SALLE) technique, water-miscible organic solvents are used for extraction of polar analytes from saline solutions. In this study, for the first time, a coupled 1-mL syringes system was utilized to perform a miniaturized SALLE method. Sulfanilamide antibiotic was extracted and determined via the developed method followed by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The extraction process was carried out by rapid shooting of acetonitrile as extraction solvent (syringe B) into saline aqueous sample solution (syringe A), and then the shooting was repeated several times at a rate of 1 cycle s-1. Thereby, an extremely large... 

    Magnetic field assisted μ-solid phase extraction of anti-inflammatory and loop diuretic drugs by modified polybutylene terephthalate nanofibers

    , Article Analytica Chimica Acta ; Volume 934 , 2016 , Pages 88-97 ; 00032670 (ISSN) Bagheri, H ; Khanipour, P ; Asgari, S ; Sharif University of Technology
    Elsevier  2016
    Abstract
    A magnetic nanocomposite consisting of nanoparticles–polybutylene terephthalate (MNPs–PBT) was electrospun and used as an extracting medium for an on-line μ-solid phase extraction (μ–SPE)–high performance liquid chromatography (HPLC) set–up with an ultraviolet (UV) detection system. Due to the magnetic property of the prepared nanofibers, the whole extraction procedure was implemented under an external magnetic field to enhance the extraction efficiencies. The developed method along with the synthesized nanocomposite were found to be appropriate for the determination of trace levels of selected drugs including furosemide, naproxen, diclofenac and clobetasol propionate in the urine sample.... 

    Immersed solvent microextraction of aryloxyphenoxypropionate herbicides from aquatic media

    , Article International Journal of Environmental Analytical Chemistry ; Volume 93, Issue 4 , Feb , 2013 , Pages 450-460 ; 03067319 (ISSN) Bagheri, H ; Es'haghi, A ; Es-haghi, A ; Sharif University of Technology
    2013
    Abstract
    An immersed solvent microextraction (SME) method was successfully developed for the trace enrichment of aryloxyphenoxypropionate herbicides from aquatic media. A microdrop of toluene was used as the extraction solvent. Some important extraction parameters such as type of solvent, solvent dropsize, stirring rate, ionic strength and extraction time were investigated and optimized. The microdrop volume of 1.5 μL, a sampling time of 25 min, and use of toluene were major parameters for achieving high enrichment factors. The linearity was studied by preconcentration of 4 mL of the water samples spiked with a standard solution of aryloxyphenoxypropionates at the concentration range of 0.15 to 30 ng... 

    Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples

    , Article Journal of Hazardous Materials ; Volume 165, Issue 1-3 , 2009 , Pages 353-358 ; 03043894 (ISSN) Bagheri, H ; Naderi, M ; Sharif University of Technology
    2009

    Graphene oxide-starch-based micro-solid phase extraction of antibiotic residues from milk samples

    , Article Journal of Chromatography A ; Volume 1591 , 2019 , Pages 7-14 ; 00219673 (ISSN) Golzari Aqda, T ; Behkami, S ; Raoofi, M ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, a method was described for the extraction of three antibiotic residues from cow milk samples using a graphene oxide–starch–based nanocomposite. The prepared nanocomposites were employed as an extractive phase for micro-solid phase extraction of antibiotics from cow milk samples. The extracted antibiotics, i.e. amoxicillin, ampicillin and cloxacillin, were subsequently analyzed by high-performance liquid chromatography–ultraviolet detection (HPLC–UV). Important variables associated with the extraction and desorption efficiency were optimized. High extraction efficiencies for the selected antibiotics were conveniently achieved using the starch–based nanocomposite as the... 

    Gradient extractive phase prepared by controlled rate infusion method: An applicable approach in solid phase microextraction for non–targeted analysis

    , Article Journal of Chromatography A ; Volume 1574 , 2018 , Pages 130-135 ; 00219673 (ISSN) Enteshari Najafabadi, M ; Kazemi, E ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The aim of this study is to introduce an extractive phase based on gradient concept by continuous changing in chemical functional groups for non–targeted analysis. For this purpose, three different two–component coatings containing (3–aminopropyl)trimethoxysilane (APTES) as polar and either phenyltriethoxysilane (PTES), octyl–trimethoxysilane (OTMS) or methyltrimethoxysilane (MTMS) as nonpolar precursors were formed on the modified stainless steel wires using controlled rate infusion (CRI) method. The presence of polar and/or non–polar functional groups on the surface of substrate was evaluated by Fourier–transform infrared spectroscopy (FTIR) together with contact angles determined... 

    Electrospun titania sol-gel-based ceramic composite nanofibers for online micro- solid-phase extraction with high-performance liquid chromatography

    , Article Journal of Separation Science ; Vol. 37, issue. 15 , August , 2014 , pp. 1982-1988 ; ISSN: 16159306 Bagher, H ; Piri-Moghadam, H ; Rastegar, S ; Taheri, N ; Sharif University of Technology
    Abstract
    Titanium(IV) tetraisopropoxide was employed as a metal oxide sol-gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe-Mn, Fe-Ni, Fe-Co, and Fe-Mn-Co-Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100-250 nm. The sorption efficiency was investigated by a micro-solid-phase extraction setup in... 

    Electrospun superhydrophobic polystyrene hollow fiber as a probe for liquid–liquid microextraction with gas chromatography-mass spectrometry

    , Article Journal of Separation Science ; Volume 39, Issue 19 , 2016 , Pages 3782-3788 ; 16159306 (ISSN) Bagheri, H ; Baktash, M. Y ; Jahandar, K ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    A superhydrophobic polystyrene hollow fiber was electrospun around a copper spring collector. This approach led to the construction of a hollow fiber membrane, and the copper spring acted as a scaffold. The characteristic properties of the hollow fiber were studied by scanning electron microscopy. The membrane was used as a probe to transfer the extracting solvent from aquatic media to a gas chromatograph. After performing the liquid–liquid microextraction procedure on 10 mL of water sample by octanol, the whole solution was passed through the prepared polystyrene hollow fiber. Propanol, containing 2 mg/L lindane as the internal standard, was used for desorption and an aliquot of 2 μL of the... 

    Electrospun magnetic polybutylene terephthalate nanofibers for thin film microextraction

    , Article Journal of Separation Science ; Volume 40, Issue 19 , 2017 , Pages 3857-3865 ; 16159306 (ISSN) Bagheri, H ; Najafi Mobara, M ; Roostaie, A ; Baktash, M. Y ; Sharif University of Technology
    Abstract
    A thin film microextraction method using elecrospun magnetic polybutylene terephthalate nanofibers is developed and implemented to isolate some selected triazines. Due to the high mechanical stability of these nanofibers, they are repeatedly used under harsh magnetic stirring and ultrasonic conditions without any damage and structure degradation. The presence of magnetic nanoparticles within the nanofiber structure increases the extraction efficiency while the fibers could be collected by an external magnet. The synthesized nanocomposite showed strong affinity toward the selected analytes. Apart from the concentration of magnetic nanoparticles within the nanocomposite network, the effect of... 

    Dispersive micro-solid phase extraction using magnetic nanoparticle modified multi-walled carbon nanotubes coupled with surfactant-enhanced spectrofluorimetry for sensitive determination of lomefloxacin and ofloxacin from biological samples

    , Article Materials Science and Engineering C ; Volume 60 , 2016 , Pages 30-36 ; 09284931 (ISSN) Amoli Diva, M ; Pourghazi, K ; Hajjaran, S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    A dispersive micro-solid-phase extraction (D-μ-SPE) procedure coupled with surfactant-enhanced spectrofluorimetric detection was developed for determination of ofloxacin and lomefloxacin from biological and environmental samples. The D-μ-SPE procedure was performed using magnetic Fe3O4 nanoparticle grafted multi-walled carbon nanotube as an efficient adsorbent. The main factors affecting the signal enhancement (including surfactant concentration and pH) and extraction efficiency (including pH, extraction time, sample volume, amount of magnetic adsorbent, and desorption conditions) were investigated in detail. Under the optimized conditions, the calibration curves were linear (R2 0.9995) over... 

    Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 153 , 2016 , Pages 709-713 ; 13861425 (ISSN) Khodaveisi, J ; Haji Shabani, A. M ; Dadfarnia, S ; Rohani Moghadam, M. R ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier 
    Abstract
    A highly sensitive and simple indirect spectrophotometric method has been developed for the determination of trace amounts of inorganic mercury (Hg2 +) in aqueous media. The method is based on the inhibitory effect of Hg2 + on the activity of horseradish peroxidase (HRP) in the oxidation of ascorbic acid by hydrogen peroxide followed by the reduction of Au3 + to Au-NPs by unreacted ascorbic acid and the measurement of the absorbance of localized surface plasmon resonance (LSPR) peak of gold nanoparticles (at 530 nm) which is directly proportional to the concentration of Hg2 +. Under the optimum conditions, the calibration curve was linear in the concentration range of 1-220 ng mL- 1. Limits... 

    Design of a pseudo stir bar sorptive extraction using graphenized pencil lead as the base of the molecularly imprinted polymer for extraction of nabumetone

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 238 , 2020 Afsharipour, R ; Dadfarnia, S ; Haji Shabani, A. M ; Kazemi, E ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Molecularly imprinted polymer (MIP) was synthesized through the coprecipitation method on the graphene oxide anchored pencil lead as a substrate for the first time and applied as an efficient sorbent for pseudo stir bar sorptive extraction of nabumetone. The extracted analyte was determined by a novel spectrophotometric method based on the aggregation of silicate sol-gel stabilized silver nanoparticles in the presence of the analyte. The synthesized polymer was characterized using Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Optimization of important parameters affecting the extraction efficiency was done using central composite design whereas the... 

    Chemometric-based determination of polycyclic aromatic hydrocarbons in aqueous samples using ultrasound-assisted emulsification microextraction combined to gas chromatography-mass spectrometry

    , Article Journal of Chromatography A ; Volume 1413 , September , 2015 , Pages 117-126 ; 00219673 (ISSN) Ahmadvand, M ; Sereshti, H ; Parastar, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In the present research, ultrasonic-assisted emulsification-microextraction (USAEME) coupled with gas chromatography-mass spectrometry (GC-MS) has been proposed for analysis of thirteen environmental protection agency (EPA) polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Tetrachloroethylene was selected as extraction solvent. The main parameters of USAEME affecting the efficiency of the method were modeled and optimized using a central composite design (CCD). Under the optimum conditions (9 μL for extraction solvent, 1.15% (w/v) NaCl (salt concentration) and 10min for ultrasonication time), preconcentration factor (PF) of the PAHs was in the range of 500-950. In order to have a... 

    A single–step synthesized supehydrophobic melamine formaldehyde foam for trace determination of volatile organic pollutants

    , Article Journal of Chromatography A ; Volume 1525 , 2017 , Pages 10-16 ; 00219673 (ISSN) Bagheri, H ; Zeinali, S ; Baktash, M. Y ; Sharif University of Technology
    Abstract
    Superhydrophobic materials have attracted many attentions in recent years while their application in sample preparation remained almost intact. In this project, a rough surface of melamine formaldehyde foam was silanized by chemical deposition of trichloromethylsilane to form a highly porous and superhydrophobic material, presumably a suitable medium for extracting non–polar compounds such as benzene and its methyl derivatives. The prepared sorbent was packed in a needle for the headspace needle–trap microextraction of benzene, toluene, ethylbenzene and xylenes (BTEX). Major parameters associated with the extraction/desorption processes were considered for optimization. Under the optimized... 

    A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    , Article Analytica Chimica Acta ; Volume 794 , 2013 , Pages 38-46 ; 00032670 (ISSN) Bagheri, H ; Daliri, R ; Roostaie, A ; Sharif University of Technology
    2013
    Abstract
    A novel Fe3O4-poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe3O4/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample... 

    Aniline-silica nanocomposite as a novel solid phase microextraction fiber coating

    , Article Journal of Chromatography A ; Volume 1238 , May , 2012 , Pages 22-29 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    2012
    Abstract
    A new unbreakable solid phase microextraction (SPME) fiber coating based on aniline-silica nanocomposite was electrodeposited on a stainless steel wire. The electropolymerization process was carried out at a constant deposition potential, applied to the corresponding aqueous electrolyte containing aniline and silica nanoparticles. The scanning electron microscopy (SEM) images showed the non-smooth and the porous surface structure of the prepared nanocomposite. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some environmentally important polycyclic aromatic hydrocarbons (PAHs), as model compounds, from aqueous samples....