Loading...
Search for: porous-media
0.009 seconds
Total 309 records

    Investigating the Dispersion Phenomenon in Fluid Flow through Porous Media Using Percolation Theory

    , M.Sc. Thesis Sharif University of Technology Keybondorian, Ebrahim (Author) ; Masihi, Mohsen (Supervisor) ; Ganjeh Ghazvini, Mostafa (Co-Advisor)
    Abstract
    Many processes in the petroleum engineering industry involve particle transport in oil and gas reservoirs including sand production, fines migration, and nanoparticle injection. In these processes it is important to understand where the particles are travelling in the reservoir and the impact that they have on the formation properties. Large particles can damage the formation and decrease permeability which reduces the productive capacity of the reservoir. During nanoparticle injection, forces at the pore level can cause retention of particles and prevent their recovery. In addition, due to the heterogeneity of typical reservoirs, it is difficult to predict how particles will spread across... 

    Experimental and Modeling Investigating of Foam Flow Behavior Stabilized by Nanoparticles in Porous Media

    , M.Sc. Thesis Sharif University of Technology Shafiei, Yousef (Author) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    Gas injection as an enhanced oil recovery (EOR) method usually suffers from low recovery efficiency. The low viscosity and density of gas as well as reservoir heterogeneity are the main reasons of early breakthrough and override of gas in oil reservoirs. To mitigate the poor sweep efficiency of gas injection, surfactants can be co-injected or injected in an alternating manner with gas to form foam within the reservoir rock. The foam formation can reduce the mobility of the injection fluids in porous media. A significant challenge of foam injection is the stability of the foam in formations and the foam liquid drainage rate is one of the key factors which characterize or show the efficiency... 

    Development of a Paper-based Microfluidic Device for Biological Assay

    , M.Sc. Thesis Sharif University of Technology Boodaghi, Miad (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    All the biological diagnostic devices that are introduced to the consumers, must meet WHO criteria. Some of these criteria include being affordable, sensitive and deliverable to the user. In the last twenty years, there have been lots of efforts to use microfluidic devices for biological assay. Due to their expensive price and requirement of complex equipment for their fabrication, polymer-based microfluidic devices have not been able to be used in developing countries. It is to be hoped that introduction of paper for fabrication of microfluidic devices could make microfluidic devices meet WHO criteria. μPADs are divided into well-based and channel-based devices. In the present work, both... 

    Investigation on Transport Phenomena in Porous Media with Multiphase Flow

    , M.Sc. Thesis Sharif University of Technology Alipoor, Mohsen (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    Porous media have many applications including heat exchangers, single-phase flow and multi-phase flow packed beds and reactors with different flow patterns, aquifers, and oil and gas reservoirs. To evaluate the behavior of porous media there is need to understand transport phenomena. In this work, we focused on metal foam porous media as an advanced porous media. The effective thermal conductivity of solid matrix, heat transfer in the presence of fluid flow, and pressure drop were investigated using CFD techniques in micro-scale supposing that the solid foam structure consisted of connected kelvin cells. The comparison of simulation results with experimental data reported in literature shows... 

    Simulation of Two-phase Flow through Rock Fractures using Multi-block Lattice Boltzmann Method

    , Ph.D. Dissertation Sharif University of Technology Foroughi, Sajad (Author) ; Pishvaie, Mahmoud Reza (Supervisor) ; Jamshidi, Saeid (Supervisor)
    Abstract
    Determining the parameters of the porous media and fractures in order to properly understand the processes governing these environments is very important. Traditionally, these parameters are determined in the laboratory. In recent years, with the advancement of computational capabilities, numerical methods have been considered to determine the parameters of the porous media. In the last few decades, the lattice Boltzmann method has been considered by the researchers as a class of computational fluid dynamic methods for simulating fluid flow. The advantages of the lattice Boltzmann method include simplicity in applying to complex media and the ability to simulate different phenomena. In this... 

    Two Phase Fluid Flow Modeling in Deforming Porous Media Using XFEM Technique

    , M.Sc. Thesis Sharif University of Technology Farrokhpour, Leila (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Geotechnical problems behavior depends on their interaction with existed fluid phases in their voids. In this research three phase porous media is introduced and it’s governing equations is presented. For solving this set of fully coupled dynamic equations finite element method is applied using elements with displacement and pressure degrees of freedom. Essential drawback of FEM method is in discontinuities modeling. In solid mechanic problems, discontinuity may occur in displacement field, such as crack or contact problems, or in their derivatives, such as multi-material problems. Major soil structures include some internal regions that there are some meshing problems during their FEM... 

    Modeling of Hydraulic Fracture Propagation in Fractured Non-isothermal Saturated Porous Media with XFEM

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Reza (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Investigation about Hydraulic Fracturing phenomenon in fractured porous medium which was occurred by in-situ fracture pressure upon the crack wings, owes the fact that creating enormous damages. However, it might include advantages such as increasing the rate of crude oil production from deep and high pressure/ high temperature reservoirs. On account of the fact that, existence of cracks and natural discontinuities and heat sources such as boundary of geo thermal reservoirs in porous mediums it is undeniable fact. Also, cross sectioning hydraulic fracturing cracks with natural cracks it is an obvious impact. Actually, investigation and analyzing the break throw of HF crack with natural... 

    Experimental Study on Fluid Loss and its Effect on Permeability

    , M.Sc. Thesis Sharif University of Technology Zamani, Hossein (Author) ; shad, Saeed (Supervisor)
    Abstract

    In order to prevent a blow out, cooling the bit, displacement of drilling particle, etc., it is necessary to use a suitable fluid called drilling mud. The construction of drilling mud, especially the oil base, has a high cost and covers more than 20% of drilling costs, so maintaining and proper use of it is important, as well as drilling the reservoir layer due to the higher permeability of this layer than Other layers allow the drilling mud to influx into the formation, which in addition to the cost of fluid loss, damage to the reservoir, reduce its permeability and many problems during production. Therefore, in order to investigate the phenomenon of fluid loss, measure its size and... 

    Three Dimensional Double Diffusive Convection in Saturated Porous Media

    , M.Sc. Thesis Sharif University of Technology Tabrizi Nejad As, Sara (Author) ; Aataiee-Ashtiani, Behzad (Supervisor)
    Abstract
    Thermal and compositional variations through porous media are the main causes of bringing changes in the density of the fluid in place and arising in density-driven flow. This phenomenon is usually called thermohaline or thermosolutal convection (TC). When the flow is driven by the concentration gradient of two different compositions the problem is called double-diffusive convection (DDC). This phenomenon can be observed in several applications as in geological carbon dioxide sequestration, geothermal systems, underground thermal energy storage, salt mining, salt domes, groundwater management, waste disposal, and seawater intrusion.Despite that TC processes are three-dimensional by nature... 

    Discontinuous Galerkin Methods for Simulating Bioreactive Transport of Viruses in Porous Media

    , M.Sc. Thesis Sharif University of Technology Aminoroaya Yamini, Eman (Author) ; Razvan, Mohammad Reza (Supervisor)
    Abstract
    Primal discontinuous Galerkin (DG) methods are formulated to solve the transport equations for modeling migration and survival of viruses with kinetic and equilibrium adsorption in porous media. An entropy analysis is conducted to show that DG schemes are numerically stable and that the free energy of a DG approximation decreases with time in a manner similar to the exact solution. Combining results for free and attached virus concentrations, we establish optimal a priori error estimates for the coupled partial and ordinary differential equations of virus transport  

    Experimental Investigation of Heat Transfer Coefficient of Porous Materials in Various Air Pressures

    , M.Sc. Thesis Sharif University of Technology Gholami, Soroush (Author) ; Nouri Broujerdi, Ali (Supervisor)
    Abstract
    Heat transfer in porous media has recently become an important subject in mechanical engineering. Heat transfer in porous media is central in many applications involving industrial devices (chemical engineering, heat exchangers, nuclear reactor, etc...) as well as complex geological formations (in situ combustion and pyrolysis, geothermal sites, etc...). On track to achieve heat transfer methods and heat transfer coefficients of porous materials, this investigation describes the design process of fabrication and experimental analysis of calculation the conduction heat transfer coefficient of the uniform porous materials. We report on thermal conductivity measurements performed on uniform... 

    Compositional Simulation of 1-D Oil Reservoirs Flow Using a High-Resolution Central Scheme

    , M.Sc. Thesis Sharif University of Technology Haghighi, Erfan (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    In recent years, oil and gas reservoirs are one of the most valuable natural resources and are the main economical basis of the country. Therefore any research which can help to optimize the efficiency and enhance their recovery is of great importance. In the past 30 years, reservoir simulation has evolved from a research field to one of the most flexible tools in reservoir engineering. Simulation is usually more quick, cost effective and reliable than other methods in predicting reservoir performance. Because of complexity of the great amount of computations, research in oil reservoirs field is usually done by mathematical/computer programs, named as simulators. For this reason, various... 

    Numerical Modeling of Linear and Nonlinear Flow in Saturated Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Nayer, Reza (Author) ; Pak, Ali (Supervisor)
    Abstract
    Study of fluid flow through the porous fractured media is used in many branches of science such as oil production, environment, water resources, geotechnics and mining, and the results of these researches are useful for industries.The porous fractured media consist of two main parts each having different roles. The first is the fracture networks that act as channels to conduct the fluid in the media, and the second is the porous media that act as a storage space for the fluid. The differences of dimensions and ability of fluid conduction between these two parts would cause the flow analysis to be performed in a heterogeneous and non-isotropic media. Moreover, the irregular networks of... 

    Investigation of Fluid Displacement under Ultrasonic Wave Radiation in Porous Media

    , M.Sc. Thesis Sharif University of Technology Najafi, Iman (Author) ; Ghotbi, Siroos (Supervisor) ; Kharaz, Riyaz (Supervisor) ; Ghazanfari, Mohammad Hossein (Co-Advisor) ; Ghaedian, Maryam (Co-Advisor)
    Abstract
    Nowadays, application of ultrasonic wave technology as a novel method of enhancing oil recovery and also gas an oil well stimulation is prevailing. Not only this method is environment friendly, but also it is economic. Although the application of this method is proved to be of outstanding positive influences in field operations, it suffers from lack of knowledge about the main governing mechanisms and also there are few mathematical models describing the process. In this study it is intended to investigate the role of ultrasonic waves on rate of recovery and the total recovery from porous media. A model is proposed which can predict the recovery at different times of operation. The results... 

    Modeling and Numerical Simulation of Inertial Two-Phase Flow in Heterogeneous Porous Media

    , M.Sc. Thesis Sharif University of Technology Siahati, Ahmad (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Bozorgmehri, Ramin (Supervisor)
    Abstract
    In this study, single-phase and two-phase, incompressible flow in a non-deformable porous media was modeled and also simulated. The Reynolds numbers have been considered high enough to justify the use of the model including inertial terms. Afterwards, the mass conservative equations were discretized. Then, the numerical model has been developed for heterogeneous porous media. The heterogeneous porous media was comprised by several specified homogeneous regions, each having isotropic transport properties or permeability distribution with applying stochastic methods. The developed numerical model was used for predicting of saturation profile in water flooding process in one, two and... 

    Experimental and Theoretical Study of Hydrodynamic Behavior and Mechanisms of Asphaltene Deposition

    , Ph.D. Dissertation Sharif University of Technology Jafari Behbahani, Taraneh (Author) ; Ghotbi, Cyrus (Supervisor) ; Taghikhani, Vahid (Supervisor) ; Shahrabadi, Abbas (Supervisor)
    Abstract
    In this work, a new model based on the multilayer adsorption kinetic mechanism and four material balance equations for oil, asphaltene, gas and water phase has been developed to account asphaltene deposition in porous media under dynamic condition and the model was verified using experimental data obtained in this work and also with those reported in the literature. The results showed that the developed model can correlate more accurately the oil flooding experimental data in comparison to the previous models based on the mechanical plugging mechanism, in particular in carbonate core samples. Also, a series of experiments was carried to determine the permeability reduction of carbonate,... 

    Experimental Study and Modeling of Scale up in Multi-blocks Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Mohammad (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Rostami, Behzad (Supervisor)
    Abstract
    Fractured reservoirs constitute a major portion of world’s petroleum reservoirs. Gravity drainage is the controlling production mechanism in these reservoirs. Thus, investigation of performance and oil production in fractured models has been the subject of many researches. Despite the considerable number of experimental and modeling studies in this area, the method of scale-up in single or multi block models is not broadly investigated. This work is divided into two experimental and modeling sections. For the experimental study, free fall gravity drainage experiments in synthetic single or multi block porous media were performed in order to investigate effects of different parameters... 

    Modeling of Multicomponent Fluid Flow Through Fractured Porous Media Using XFEM

    , M.Sc. Thesis Sharif University of Technology Bajalan, Zahra (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In the present research, a numerical model is developed based on extended finite element method to simulate single phase multicomponent fluid flow through naturally fractured porous media containing explicit fractures. Each of fracture and porous matrix are separate continuous media that interact with each other due to fluid and solute exchange. The governing equations involve continuity equation of fluid phase and mass conservation equation of one component. The extended finite element method allows for explicit and accurate representation of cracks to capture the mass transfer of fluid components between fracture and matrix. Existence of fracture in the domain results in discontinuity of... 

    Pore Scale Modeling and Upscaling of Non-Aqueous Phase Liquid Dissolution, Flow and Distribution in Heterogeneous Porous Media

    , M.Sc. Thesis Sharif University of Technology Khasi, Saeed (Author) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    In this work, flow transport, distribution, and dissolution of non-aqueous phase liquids (NAPLs) in heterogeneous porous media were modeled by focusing on the dissolution process in pore-level and field scale. First, by adopting advection-diffusion and mass transfer equations, dissolution process and NAPL distribution were investigated in a heterogeneous porous media using pore network modeling. The 2-D developed model was based on observations of micromodel tests. The pore scale simulator which adopted by this work was improved in some aspects in comparison to previous models in the literatures. First, in the phase displacement, by considering more realistic geometries for pore structure... 

    Investigating the Performance of Preformed Particle Gels (PPGs) for Conformance Control and Improve Oil Recovery in Heterogeneous Porous Media: Pore-Scale Analysis of Displacement Mechanisms

    , M.Sc. Thesis Sharif University of Technology Paprouschi, Aminsadegh (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Fatemi, Mobeen (Supervisor)
    Abstract
    According to the reported field experiences, excess water production from high permeable thief zones of oil reservoirs is the main source of severe operational problems and economic issues. Application of Preformed Particle Gels (PPGs) is an effective technique to overcome this problem. Static test analysis is a primary method for evaluating the performance of PPGs material at different conditions of pH, salinity, etc. However, the effect of the presence of oil and rock on the kinetics of swelling/de-swelling of PPGs is not well understood. Also, considering the vast field application of Co_2-based oil recovery methods, it is interesting to study the effect of carbon dioxide gas on swelling...