Loading...
Search for: photocatalytic
0.008 seconds
Total 263 records

    Photo-degradation of organic dye by zinc oxide nanosystems with special defect structure: Effect of the morphology and annealing temperature [electronic resource]

    , Article Journal of Applied Catalysis A: General ; 22 February 2014, Volume 472, Pages 198–204 Shidpour, R. (Reza) ; Simchi, A. (Abdolreza) ; Ghanbari, Faegheh ; Vossoughi, M ; Sharif University of Technology
    Abstract
    The fabrication of strong photocatalysts applied to the degradation of organic pollutants is necessary in environmental applications. In a single-stage method, acetate precursor and poly vinyl pyrolydine are used to produce ZnO nanostructures with various morphologies in annealing temperatures ranging from 300 to 900 °C. The physical properties of the prepared nanostructures were characterized by SEM, TEM, XRD, BET, DRS, CHN analysis and PL spectroscopy. The SEM images exhibit a variety of the as-prepared hexagonal zinc oxides including wires, rods, particles and porous network of welded particles of ZnO nanoparticles. The results of the photocatalytic degradation of methylene blue as an... 

    Strain rate sensitivity, work hardening, and fracture behavior of an Al-Mg TiO2 nanocomposite prepared by friction stir processing [electronic resource]

    , Article Journal of Metallurgical and Materials Transactions A ; August 2014, Volume 45, Issue 9, P.4073-4088 Khodabakhshi, F ; Simchi, A. (Abdolreza) ; Kokabi, Amirhossein ; Nosko, Martin ; Svec, Peter ; Sharif University of Technology
    Abstract
    Annealed and wrought AA5052 aluminum alloy was subjected to friction stir processing (FSP) without and with 3 vol pct TiO2 nanoparticles. Microstructural studies by electron backscattered diffraction and transmission electron microscopy showed the formation of an ultra-fine-grained structure with fine distribution of TiO2 nanoparticles in the metal matrix. Nanometric Al3Ti and MgO particles were also observed, revealing in-situ solid-state reactions between Al and Mg with TiO2. Tensile testing at different strain rates determined that FSP decreased the strain rate sensitivity and work hardening of annealed Al-Mg alloy without and with TiO2 nanoparticles, while opposite results were obtained... 

    Photocatalytic degradation of dibenzothiophene using La/PEG-modified TiO2 under visible light irradiation

    , Article Research on Chemical Intermediates ; Jan , 2014 , pp. 1-17 Moradi, S ; Vossoughi, M ; Feilizadeh, M ; Zakeri, S. M. E ; Mohammadi, M. M ; Rashtchian, D ; Yoosefi Booshehri, A ; Sharif University of Technology
    Abstract
    While the photocatalytic degradation of various organic compounds under UV light irradiation has been widely investigated, visible-light-induced photocatalytic degradation of low levels of pollutants such as dibenzothiophene (DBT) is occasionally reported. In the present work, lanthanide/polyethylene glycol-modified TiO2 (La/PEG/TiO2) has been successfully synthesized by a sol-gel method. The photocatalyst was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis diffusive reflectance spectroscopy, and energy dispersive X-ray analysis. Moreover, the photocatalytic degradation of DBT under visible light irradiation is investigated for the... 

    On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells

    , Article Applied Surface Science ; Volume 273 , July , 2013 , Pages 391-398 ; 01694332 (ISSN) Zirak, M ; Moradlou, O ; Bayati, M. R ; Nien, Y. T ; Moshfegh, A. Z ; Sharif University of Technology
    2013
    Abstract
    We have studied systematically photocatalytic properties of the vertically aligned ZnO@CdS core-shell nanorods where the features were grown through a multistep procedure including sol-gel for the formation of ZnO seed layer, hydrothermal process to grow ZnO nanorods, and successive ion layer adsorption and reaction (SILAR) process to deposit CdS nanoshells onto the ZnO nanorods. Formation of the ZnO seed layer and vertically aligned ZnO nanorods (d ∼ 40 nm) with a hexagonal cross-section was confirmed by AFM and SEM imaging. Successful capping of ZnO nanorods with homogeneous CdS nanocrystallites (∼5 nm) was ascertained by HRTEM diffraction and imaging. Optical properties of the samples... 

    On the assessment of photocatalytic activity and charge carrier mechanism of TiO2@SnO2 core-shell nanoparticles for water decontamination

    , Article Journal of Photochemistry and Photobiology A: Chemistry ; Volume 338 , 2017 , Pages 171-177 ; 10106030 (ISSN) Farhadi, A ; Mohammadi, M. R ; Ghorbani, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    We synthesize TiO2@SnO2 core-shell nanoparticles (NPs) by a facile two-step aqueous sol-gel method and their photocatalytic activity is compared with the pure TiO2 and SnO2 NPs for degradation of methylene blue under UV irradiation. The chemical property, crystal structure and morphology of the synthesized samples are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM) and transmission electron microscope (TEM) techniques. The mechanisms of electron–hole recombination and separation of charge carriers are studied by photoluminescence (PL) and diffuse reflectance spectroscopy (DRS). Furthermore, the kinetics... 

    Metal-organic framework (MIL-100 (Fe)): synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling

    , Article Materials Research Bulletin ; Volume 100 , April , 2018 , Pages 357-366 ; 00255408 (ISSN) Mahmoodi, N. M ; Abdi, J ; Oveisi, M ; Alinia Asli, M ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, three metal-organic frameworks (Materials of Institut Lavoisier: MILs-100 (Fe)) as porous nanomaterials were synthesized using FeCl3, Fe(NO3)3 and Fe2(SO4)3 and denoted as MIL-100-1, MIL-100-2 and MIL-100-3, respectively. The synthesized MILs-100 (Fe) were characterized by FTIR, SEM, TEM, XRD, UV–vis DRS and zeta potential. Basic Blue 41 (BB41) was used as a model dye to study the photocatalytic dye degradation ability of the synthesized metal organic frameworks. The results showed that the synthesized nanomaterials decolorized BB41. The decolorization kinetics followed first-order kinetic model. The rate constant was 0.0034, 0.0041, 0.0091 and 0.0289 (1/min) for 0.01, 0.02,... 

    Evaluation of the photo-catalytic degradation of pyrene using fe-doped tio2 in presence of UV

    , Article Desalination and Water Treatment ; Volume 169 , 2019 , Pages 232-240 ; 19443994 (ISSN) Khodadadi Saloot, M ; Borghei, S. M ; Haji Seyed Mohammad Shirazi, R ; Sharif University of Technology
    Desalination Publications  2019
    Abstract
    The oil-based compounds are widely used in modern human life, and the accidental release or leakage of these compounds is led to water and soil pollution and creates many problems for the environment. The purpose of this study was to determine the efficiency of photo-catalytic degradation of pyrene using Fe-doped TiO2 in the presence of UV. This experimental study was carried out at laboratory scale in a 2 L pilot reactor. The nanoparticle was synthesized by the sol-gel method. Pyrene degradation was investigated under different conditions of pH, reaction time, nanoparticle concentration and pollutant concentration. For the statistical analysis, SPSS V.16 software and one-way analysis of... 

    Novel Pt-Ag3PO4/CdS/chitosan nanocomposite with enhanced photocatalytic and biological activities

    , Article Nanomaterials ; Volume 10, Issue 11 , May , 2020 , Pages 1-21 Kiani, M ; Bagherzadeh, M ; Kaveh, R ; Rabiee, N ; Fatahi, Y ; Dinarvand, R ; Jang, H. W ; Shokouhimehr, M ; Varma, R. S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Decorating photocatalysts with noble metal nanoparticles (e.g., Pt) often increases the catalysts’ photocatalytic activity and biomedical properties. Here, a simple and inexpensive method has been developed to prepare a Pt-Ag3PO4/CdS/chitosan composite, which was characterized and used for the visible light-induced photocatalytic and antibacterial studies. This synthesized composite showed superior photocatalytic activity for methylene blue degradation as a hazardous pollutant (the maximum dye degradation was observed in 90 min of treatment) and killing of Gram positive bacterial (Staphylococcus aureus and Bacillus cereus) as well as Gram negative bacteria (Klebsiella pneumoniae, Salmonella... 

    CMC-based functional film incorporated with copper-doped TiO2 to prevent banana browning

    , Article Food Hydrocolloids ; Volume 122 , 2022 ; 0268005X (ISSN) Ezati, P ; Riahi, Z ; Rhim, J. W ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Titanium dioxide (TiO2) and Cu-doped TiO2 (Cu–TiO2) were synthesized using a sol-gel method and used as nanofillers to prepare CMC-based functional packaging films. The Cu–TiO2 was spherical particles with a size range of 66.1 ± 9.0 nm TiO2 and Cu–TiO2 nanoparticles had good compatibility with CMC and were evenly distributed in the CMC polymer matrix to form a composite film. The TiO2-added film did not show significant antibacterial activity, but the Cu–TiO2-added film exhibited high antibacterial activity against foodborne pathogenic bacteria (L. monocytogenes and E. coli) under visible light. When bananas were packaged with the CMC-based films, the CMC/Cu–TiO2 film effectively delayed the... 

    Synthesis of Solar Light Responsive Nanocatalysts and Investigation of their Performance in Water Splitting Reaction

    , M.Sc. Thesis Sharif University of Technology Mokhtari, Negin (Author) ; Rahman Setayesh, Shahrbanoo (Supervisor)
    Abstract
    Today, fossil fuels cause countless environmental pollutants, so replacing fossil fuels with clean energy sources is very important. Water splitting using light and a semiconductor is one of the new methods of producing oxygen and hydrogen, which due to its simplicity and cheapness, has attracted a lot of attention today. In this study, ZnMn2O4 photocatalyst nanoparticles were first loaded on a graphitic carbon nitride support in different ratios of ZnMn2O4 and carbon support by hydrothermal method. Then the photocatalysts were evaluated for evolution of oxygen and hydrogen photocatalysts through water splitting under visible light. In ZnMn2O4 / g-C3N4 (80:20) nanocomposite, the highest... 

    Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria

    , Article Journal of Alloys and Compounds ; Vol. 612 , 2014 , pp. 380-385 ; ISSN: 09258388 Nourmohammadi, A ; Rahighi, R ; Akhavan, O ; Moshfegh, A ; Sharif University of Technology
    Abstract
    Vertically aligned ZnO nanowires (NWs) hybridized with reduced graphene oxide sheets (rGO) were applied in efficient visible light photoinactivation of bacteria. To incorporate graphene oxide (GO) sheets within the NWs two different methods of drop-casting and electrophoretic deposition (EPD) were utilized. The EPD method yielded effective penetration of the positively charged GO sheets into the NWs to form a spider net-like structure, whereas the drop-casting method resulted in only a surface coverage of the GO sheets on top of the NWs. The electrical connection between the EPD-incorporated sheets and the NWs was checked by monitoring the electron transfer from UV-assisted photoexcited ZnO... 

    Electrochemical behavior of S-doped nanostructured TiO2 layer synthesized with PEO process for photocatalytic applications

    , Article Advanced Materials Research ; Volume 829 , 2014 , Pages 487-491 ; ISSN: 10226680 ; ISBN: 9783037859070 Ahmadzadeh, M ; Ghorbani, M ; Sharif University of Technology
    Abstract
    Sulfur doped and pure micro-nanoporous TiO2 film were synthesized with PEO method to produce a film with a high surface area for photocatalysis applications. The effect of applied voltage and electrolyte concentration on the microstructure and photocatalytic properties of the prepared layer were investigated via SEM, XRD, EIS and DRS studies. Electrochemical Impedance Spectroscopy (EIS) was carried out in order to determine the corrosion and electrochemical properties of the produced layer. It was found that although the barrier layer resistance decreases with the voltage, the layers porosity and consequently the surface area increases. Finally the XRD and DRS spectrums were correlated with... 

    Effect of iron oxide and silica doping on microstructure, bandgap and photocatalytic properties of titania by water-in-oil microemulsion technique

    , Article Transactions of the Indian Ceramic Society ; Volume 70, Issue 4 , Jan , 2011 , Pages 227-232 ; 0371750X (ISSN) Karbassi, M ; Nemati, A ; Zari, M. H ; Ahadi, K ; Sharif University of Technology
    2011
    Abstract
    The microemulsion method was successfully used to prepare a series of TiO2, Fe oxide and SiO2 doped TiO2 nanoparticles at Fe/Ti atomic ratio of 10% and Si/Ti atomic ratio of 15%. The molar ratio of water to surfactant (W0) was 2. The samples were calcinated at 350°C. The structural features of TiO2, Fe oxide and SiO 2-TiO2 were investigated by XRD, UV-Visible spectroscopy, SEM and TEM. XRD data verified the formation of typical characteristic anatase form in all the prepared Fe and SiO2-doped TiO2 samples. In comparison with the pure TiO2, Fe oxide and SiO 2-TiO2 samples were relatively large in particle size, indicating that doping with Fe oxide and SiO2 can help in increasing the particle... 

    Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction

    , Article Journal of Physical Chemistry C ; Volume 114, Issue 30 , July , 2010 , Pages 12955-12959 ; 19327447 (ISSN) Akhavan, O ; Abdolahad, M ; Esfandiar, A ; Mohatashamifar, M ; Sharif University of Technology
    2010
    Abstract
    TiO2 nanoparticles were physically attached to chemically synthesized single-layer graphene oxide nanosheets deposited between Au electrodes in order to investigate the electrical, chemical, and structural properties of the TiO2/graphene oxide composition exposed to UV irradiation. X-ray photoelectron spectroscopy showed that after effective photocatalytic reduction of the graphene oxide sheets by the TiO2 nanoparticles in ethanol, the carbon content of the reduced graphene oxides gradually decreased by increasing the irradiation time, while no considerable variation was detected in the reduction level of the reduced sheets. Raman spectroscopy indicated that, at first, the photocatalytic... 

    Enhanced visible light photocatalytic activity of nano-biocl/bivo4/zeolite p-n heterojunction and ag/biocl/bivo4 hybrid

    , Article Materials Research Innovations ; 2016 , Pages 1-7 ; 14328917 (ISSN) Salari, H ; Gholizadeh Khasevani, S ; Rahman Setayesh, S ; Gholami, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Visible light-active BiOCl/BiVO4/mordenite and Ag/BiOCl/BiVO4 nanocomposite with a p–n heterojunction structure were prepared. Mordenite nanocrystals were synthesised using the hydrothermal method. Deposition and reduction methods were utilised to modify the Zeolite surface. The photocatalytic activities of the heterojunctions were investigated by scanning the change of Acid blue 92 (AB92) concentration under visible irradiation. The nanocomposites demonstrated improved efficiency for dye photodegradation. The activities are due to strong oxidative ability and efficient charge separation and transfer through the BiOCl/BiVO4 p–n junction. The photogenerated electron-holes react with species... 

    Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation

    , Article Applied Surface Science ; Volume 371 , 2016 , Pages 592-595 ; 01694332 (ISSN) Rokhsat, E ; Akhavan, O ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Graphene oxide (GO) sheets with a low concentration (∼1 wt%) were deposited on surface of hydrothermally synthesized ZnO nanorod films. The deposited films were heat treated at 450 °C in order to achieve suitable GO/ZnO hybrid thin films for photocatalytic purposes. The photocatalytic activity of the nanocomposite films was investigated based on degradation of methylene blue (MB) dye which is a typical pollutant model. The GO/ZnO hybrid thin films could degrade higher MB (∼90%) than the bare ZnO nanorods (which showed only ∼75% degradation) after 450 min UV irradiation. A further significant improvement (resulting in a nearly complete degradation of MB) was achieved by exposing the GO/ZnO... 

    Enhanced visible light photocatalytic activity of nano-BiOCl/BiVO4/Zeolite p-n heterojunction and Ag/BiOCl/BiVO4 hybrid

    , Article Materials Research Innovations ; Volume 22, Issue 3 , 2018 , Pages 137-143 ; 14328917 (ISSN) Salari, H ; Gholizadeh Khasevani, S ; Rahman Setayesh, S ; Gholami, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Visible light-active BiOCl/BiVO4/mordenite and Ag/BiOCl/BiVO4 nanocomposite with a p–n heterojunction structure were prepared. Mordenite nanocrystals were synthesised using the hydrothermal method. Deposition and reduction methods were utilised to modify the Zeolite surface. The photocatalytic activities of the heterojunctions were investigated by scanning the change of Acid blue 92 (AB92) concentration under visible irradiation. The nanocomposites demonstrated improved efficiency for dye photodegradation. The activities are due to strong oxidative ability and efficient charge separation and transfer through the BiOCl/BiVO4 p–n junction. The photogenerated electron-holes react with species... 

    Visible light photocatalytic performance of Ag2O/ZnCr-LDH nanocomposite

    , Article Chemical Physics Letters ; Volume 751 , 2020 Akbarzadeh, E ; Rasteh, M ; Gholami, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Ag2O particles were loaded on the surface of ZnCr-LDH via an anion-exchange precipitation approach by using privilege of the memory trace feature of the LDH-type materials. The structural properties of the resulted photocatalyst were explored by different spectroscopic and microscopic methods. The photocatalytic studies on acid black degradation ascertained that the prepared Ag2O/ZnCr-LDH nanocomposite represented an observably increased degradation performance of organic pollutants compared with pure Ag2O and ZnCr-LDH. This improved photocatalytic performance can be ascribed to the enhanced surface area, good order distributing of particles and effective charge carrier transfer and... 

    Preparation of Ag-Al₂O₃ nano structures by combustion method and investigation of photocatalytic activity

    , Article International Journal of Applied Ceramic Technology ; Volume 18, Issue 6 , 2021 , Pages 2064-2074 ; 1546542X (ISSN) Einafshar, E ; Khodadadipoor, Z ; Fazli, M ; Einafshar, N ; Mohebbi Zinab, J ; Asaei, S ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In this research, Ag-Al2O3 nanostructures have been prepared via combustion synthesis and ammonium acetate and urea have been applied as fuels. The prepared Ag-Al2O3 nanostructures were characterized by DTA, XRD, SEM, TEM, and BET spectroscopy. The effect of different ratios of silver to alumina and fuel percentage on morphology and particle size of prepared products were investigated. The results showed that using ammonium acetate fuel led to the production of Ag-γ-Al2O3 nanocompounds, while using urea produced Ag-α-Al2O3. Also, the photocatalytic activity of Ag-Al2O3 nanostructures for Congo red degradation was evaluated by UV-Vis diffuse reflectance spectroscopy. The photocatalytic... 

    Titania nanotubes decorated with cu(I) and cu(II) oxides: antibacterial and ethylene scavenging functions to extend the shelf life of bananas

    , Article ACS Sustainable Chemistry and Engineering ; Volume 9, Issue 19 , 2021 , Pages 6832-6840 ; 21680485 (ISSN) Riahi, Z ; Priyadarshi, R ; Rhim, J. W ; Hong, S. I ; Bagheri, R ; Pircheraghi, G ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Titanium nanotubes (TNTs) were prepared using TiO2 and decorated with CuO and Cu2O to have photocatalytic efficiency under visible light. TNTs decorated with copper oxides (TNT-CuO and TNT-Cu2O) were confirmed by the elemental mapping and XPS results. Unlike TNT and TiO2, TNT-CuO and TNT-Cu2O showed higher photocatalytic activity, such as antimicrobial and ethylene scavenging activities under visible light. Between the two types of copper oxide-decorated TNTs, TNT-Cu2O showed photocatalytic activity higher than that of TNT-CuO. The ethylene scavenging activity of TNT-Cu2O was about 40% higher than that of TNTs and TNT-CuO. The photocatalytic activity of titanium-based nanoparticles was...