Loading...
Search for: nanostructures
0.009 seconds
Total 737 records

    An analytical formulation enabling analysis of resonance eigenmodes and their interferences in scattering from plasmonic nanostructures, applications in engineering the radiation loss

    , Article IEEE Journal of Quantum Electronics ; Volume PP, Issue 99 , 2016 ; 00189197 (ISSN) Khajeahsani, M. S ; Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    An analytic formulation revealing exact contribution of different factors affecting the interference interaction between eigenmodes of a scatterer is presented by utilizing our previously reported modal scattering power formula. For special case of arbitrary multilayer concentric and nonconcentric nanoshells, a recursive method for analytically calculating the T-matrix, and each of these factors is derived. Results for a three layer structure showing the conditions for constructive and destructive interference interactions are discussed in details. It is shown that the interference interaction can occur in the vicinity of the overlapping resonance frequencies of the two spatially overlapping... 

    Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure

    , Article Waves in Random and Complex Media ; 2019 ; 17455030 (ISSN) Hashemi, H. R ; Alizadeh, A ; Oyarhossein, M. A ; Shavalipour, A ; Makkiabadi, M ; Habibi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This article investigates the influences of nonuniform imperfection on the dynamic amplitude and resonance frequency of the nanoshell reinforced with graphene nanoplatelet (GNP). The novelty of the current study is to consider the effects of porosity, thermal loading and graphene platelet reinforced composites on the dynamic behavior of the nanostructure. Three-length scale parameters (l0=5 h, l1=3 h, l2=5 h) in the modified strain gradient theory (MSGT) show a better agreement with MD simulation in comparison with other theories. Finally, the effects of different factors on the dynamic amplitude and resonance frequency of the porous nanostructure are examined in detail. © 2019, © 2019... 

    Optical nanoprobes for chiral discrimination

    , Article Analyst ; Volume 145, Issue 20 , 2020 , Pages 6416-6434 Bigdeli, A ; Ghasemi, F ; Fahimi Kashani, N ; Abbasi Moayed, S ; Orouji, A ; Jafar Nezhad Ivrigh, Z ; Shahdost Fard, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Chiral discrimination has always been a hot topic in chemical, food and pharmaceutical industries, especially when dealing with chiral drugs. Enantiomeric recognition not only leads to better understanding of the mechanism of molecular recognition in biological systems, but may further assist in developing useful molecular devices in biochemical and pharmaceutical studies. By emerging nanotechnology and exploiting nanomaterials in sensing applications, a great deal of attention has been given to the design of optical nanoprobes that are able to discriminate enantiomers of chiral analytes. This review explains how engineering nanoparticles (NPs) with desired physicochemical properties allows... 

    Study of the densification of a nanostructured composite powder. part 1: effect of compaction pressure and reinforcement addition

    , Article Materials Science and Engineering A ; Volume 486, Issue 1-2 , 2008 , Pages 580-584 ; 09215093 (ISSN) Abdoli, H ; Farnoush, H ; Salahi, E ; Pourazrang, K ; Sharif University of Technology
    2008
    Abstract
    The compressibility behavior of Al-AlN nanostructured composite powder with different amount of reinforcement content was studied. The composite powder was synthesized by blending and high-energy milling process for 25 h. Williamson-Hall method was applied to determine the crystallite size after milling process. To investigate the role of reinforcement particles in consolidation of composite powders, monolithic aluminum powder was examined. Samples were made at different pressures and relationships were established between the compaction pressure and the density of the compacts. The modified Heckel equation was used to assume the pressure effect on yield strength and then was compared with... 

    Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure

    , Article Waves in Random and Complex Media ; Volume 31, Issue 6 , 2021 , Pages 1340-1366 ; 17455030 (ISSN) Hashemi, H. R ; Alizadeh, A ; Oyarhossein, M. A ; Shavalipour, A ; Makkiabadi, M ; Habibi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    This article investigates the influences of nonuniform imperfection on the dynamic amplitude and resonance frequency of the nanoshell reinforced with graphene nanoplatelet (GNP). The novelty of the current study is to consider the effects of porosity, thermal loading and graphene platelet reinforced composites on the dynamic behavior of the nanostructure. Three-length scale parameters (l 0=5 h, l 1=3 h, l 2=5 h) in the modified strain gradient theory (MSGT) show a better agreement with MD simulation in comparison with other theories. Finally, the effects of different factors on the dynamic amplitude and resonance frequency of the porous nanostructure are examined in detail. © 2019 Informa UK... 

    Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template

    , Article Materials Chemistry and Physics ; Volume 91, Issue 2-3 , 2005 , Pages 417-423 ; 02540584 (ISSN) Saedi, A ; Ghorbani, M ; Sharif University of Technology
    2005
    Abstract
    Anodic aluminum oxide (AAO) was used as a template to prepare highly ordered Ni-Fe-Co alloy nanowire arrays. This membrane was fabricated with two-step anodizing method. It is found that there is an optimum barrier thickness to obtain a successful electrodeposition in pores of AAO. The thickness of barrier layer can be modified by additional electrochemical process after completing the anodizing step. Barrier layer thinning can create a rooted structure at the bottom side of the AAO pores and the electrodeposited nanowire arrays. The triple Ni-Fe-Co alloy was deposited in AAO membrane by ac voltage in a simple sulfate bath. The composition of nanowires shows anomalous deposition features... 

    Evaluation of The Effect of Molecular Weight, Mixing Approach and Compatibilizer on Morphologhy and Mechanical Properties of PP/PA/Clay Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Orshesh, Ziba (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Polypropylene/clay nanocomposites are considered as a group of widely used nanocomposites in industrial applications due to their desired properties, yet reasonable cost. However, dissimmilar chemical nature of polypropylene and clay do not allow perfect dispersion of silicate layeres in the matrix and thus restricts full advantages of these composites.An earlier investigation in this group considered solving this shortcoming through incorporation of PA6 as an intermediate phase to enhance clay platelets dispersion. The current project follows this route via studing the influence of molecular weight of the PP matrix, compatibilzer and the mixing procedure of the compound. To investigate the... 

    Dendrimers and Other Nanostructures by the Approach of Graph Theory

    , M.Sc. Thesis Sharif University of Technology Mohammad Hasani, Behtash (Author) ; Mahmoodian, Ebadollah (Supervisor)
    Abstract
    In this thesis, we study the application of graph theory in chemistry. Such as, molecular graphs, modeling, algorithms, topologicalindicesandsoon. Themaingoalinthisresearchis collecting problems in chemistry which have mathematical models, specially in graph theory. Also we study the methods applied to them by considering the problems in chemistry with mathematical approach. In particular case, dendrimers and other structures of chemistry have been attributed to some graphs, where by studying their graphical parameters, like connectivity, independent sets, perfect matchings, isomorphism and topological indices and other parameters, we obtain some results in chemistry  

    An Investigation Into the Annealing Behavior of Severely Deformed Copper

    , M.Sc. Thesis Sharif University of Technology Bisadi, Ghasem (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    Mechanical properties of commercial purity copper sheets are improved and grain size of material is refined into Nano scale after using a severe plastic deformation technique called constrained groove pressing (CGP). Since there are high levels of stored energy and non-equilibrium grain boundaries in nanostructure, annealing behavior and thermal stability of material should be investigated. Although there is not a clear distinction between annealing phenomena, it is essential to determine the intervals of annealing phenomena in order to control their sequences on mechanical properties and nanostructure. Also mechanisms of annealing phenomena should be determined to realize annealing behavior... 

    Refining of Nanostructure of Polypropylene/Nanoclay Composite Via Optimization of Compatibilizer and Masterbatch

    , M.Sc. Thesis Sharif University of Technology Jalili, Negin Sadat (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Polypropylene (PP) is a fast growing polymer, particularly in automotive industry, where PP compounds have replaced many different parts made of conventional materials. In the first step, PP-g-MA, as compatibilizer, was synthesized. Two kinds of polypropylenes including a homo- and a block co-polymer were incorporated for this goal. Characterizations via titration and FTIR tests revealed higher degree of grafting reaction when homo-polymer was used for synthesizing PP-g-MA. In the next step, nanocomposites containing 3 wt% nanoclay with three different PP-g-MA/nanoclay ratios of 1:1, 2:1 and 3:1were made using a co-rotating twin screw extruder. Tensile, impact and XRD tests were performed to... 

    Studying and Synthesize of H2S Gas Sensors Based on Modified WO3 Nanostructure Thin Films

    , M.Sc. Thesis Sharif University of Technology Kashani, Shima (Author) ; Iraji zad, Aazam (Supervisor) ; Rahimi, Fereshte (Co-Advisor)
    Abstract
    H2S is a toxic gas used in chemical laboratories and industries. H2S is also liberated in nature due to biological processes and also from mines and petroleum fields. At some threshold level, exposure to concentrations over 10 ppm can result in headaches, irritability, dizziness and in some case leads to death. So that introducing sensors which sense H2S at ppm level with the low response time is so essential. The present work emphasizes on H2S resistance-sensing properties of pure and Pd doped WO3 films prepared by Arc discharge method. XRD, SEM, EDAX and XPS were applied to analyze crystal structure, morphology and chemical composition of the films. The analyzes results showed that films... 

    Mechanical Properties of the Carbon Graphene Sheets with FEM

    , M.Sc. Thesis Sharif University of Technology Moshrefzde Sani, Hadi (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    In this research, molecular structural mechanics method is employed to calculate the Young’s modules of a two-layered carbon graphene sheet. For this purpose, covalent bonds are modeled using non-linear beam elements and van der Waals interactions are replaced by nonlinear truss elements. Morse potential and Lennard-Jones potential equations are used to simulate the covalent bonds and van der Waals interactions, respectively. For each atom, van der Waals forces are considered from all other atoms located in its cut-off radius. Young’s modulus, bending modules and Poisson’s ratio of single and two-layered graphene sheets were calculated and the results revealed that Young’s modulus decreases... 

    Preparation and Characterization of Hydroxyapatite Nanostructures Using Natural Resources for Bone Scaffold Applications

    , M.Sc. Thesis Sharif University of Technology Gheysari, Hengameh (Author) ; Simchi, Abdolreza (Supervisor) ; Askari, Masoud (Supervisor)
    Abstract
    This investigation presents synthesis and characterization of pure and monophasic hydroxyapatite (Ca10(PO4)6(OH)2; HA) Nanostructures prepared by coral and oyster shell powders heated at 800 oC for 8 h as precursor via precipitation method. The morphology of HA nanostructures was controlled in the presence of various surfactants such as SDS, CTAB and PVP. The HA Nanorods synthesized by SDS were applied to fabricate bone scaffolds. Particle sizes of the HA Nanoparticles were about 20-30 nm. Pours three-dimensional HA/Ge/CMC scaffolds cross-linked by citric and oxalic acids were synthesized. In order to increase the pore size of the scaffolds, NaCl with medium (180-250 µm) and large (420-500... 

    Synthesis of Super-porous Nano Structure Nitinol by Milling using Space Holder Technics and Measure of Termomechanical Properties

    , M.Sc. Thesis Sharif University of Technology Khalatbari, Mohammad Saleh (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    NiTi is known as a most important material for manufacturing implants and other medical devises duo to its shape memory and super elasticity properties, high energy damping and high corrosion resistance.In this project the possibility of producing nano structured NiTi implant with high porosity was investigated. For reaching to nano scale mechanical alloying process was done on Ti and Ni powder as row materials. Mechanical alloying process and the possibility of reaching nano structure or amorphous phase was investigated. Space holder technic was used for reaching a porous structure. Sintering process was planned in a way to inhibit grain growth as much as possible. The samples sintered in... 

    Synthesis of Modified Porous Nanostructures and Investigation of Oxidation Reaction Kinetics

    , M.Sc. Thesis Sharif University of Technology Gholizadeh, Sepideh (Author) ; Gholami, Mohammad Reza (Supervisor)
    Abstract
    In this work ،we used the hydrothermal method for prepared the Bivo4 nano particles. For the best photocatality property these nano particles stabilized on the different basis. This catalysis characterized by UV-vis, XRD, BET, FTIR and SEM. The size of zeolites catalyst were 22 nm and size of Bivo4 were 54 nm and the SEM showed that the BivO4 were sphere. By addition of BiVO4 nano particles to the surface of zeolite, the surface area was increase, but addition of BiVO4 nano particles to surface, the average of holes size decreased and distribution of holes will be monotonous and the surface area increased. In the continue for investigation of photo catalyst activity of nano particle, we used... 

    Production of nanostructured Ni-Ti-Ag alloy by mechanical alloying [electronic resource]

    , Article Advanced Materials Research ; Volume 829, 2014, 67-72 Rostami, A. (Abbas) ; Sadrnezhaad, Khatiboleslam ; Bagheri, Gh. Ali ; Sharif University of Technology
    Abstract
    Because of corrosion resistance and antibacterial effects, shape memory Ni-Ti-Ag alloy can be considered for different biomedical applications. Mechanical alloying is used to produce nanostructured Ni-Ti-Ag alloy from elemental powders. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) are used to characterize the product. Results show that after 1h milling, homogenous distribution of the elements occurs; while no intermetallic compounds is observed. After 3h milling, titanium dissolves in nickel to form amorphous and nanostructured solid phases. Peaks of B2 phase appear in the XRD pattern after the 3h milling of the powder mixture. Sintering of the 3h-milled... 

    Hydrogen desorption properties of MgH 2–TiCr 1.2 Fe 0.6 nanocomposite prepared by high-energy mechanical alloying [electronic resource]

    , Article Journal of Power Sources ; 2011, Vol. 196, No.10, P.4604-4608 Mahmoudi, N. (Nafiseh) ; Kaflou, A ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    In the present work, high-energy mechanical alloying (MA) was employed to synthesize a nanostructured magnesium-based composite for hydrogen storage. The preparation of the composite material with composition of MgH2–5at% (TiCr1.2Fe0.6) was performed by co-milling of commercial available MgH2 powder with the body-centered cubic (bcc) alloy either in the form of Ti–Cr–Fe powder mixture with the proper mass fraction (sample A) or prealloyed TiCr1.2Fe0.6 powder (sample B). The prealloyed powder with an average crystallite size of 14nm and particle size of 384nm was prepared by the mechanical alloying process. It is shown that the addition of the Ti-based bcc alloy to magnesium hydride yields a... 

    Photo-degradation of organic dye by zinc oxide nanosystems with special defect structure: Effect of the morphology and annealing temperature [electronic resource]

    , Article Journal of Applied Catalysis A: General ; 22 February 2014, Volume 472, Pages 198–204 Shidpour, R. (Reza) ; Simchi, A. (Abdolreza) ; Ghanbari, Faegheh ; Vossoughi, M ; Sharif University of Technology
    Abstract
    The fabrication of strong photocatalysts applied to the degradation of organic pollutants is necessary in environmental applications. In a single-stage method, acetate precursor and poly vinyl pyrolydine are used to produce ZnO nanostructures with various morphologies in annealing temperatures ranging from 300 to 900 °C. The physical properties of the prepared nanostructures were characterized by SEM, TEM, XRD, BET, DRS, CHN analysis and PL spectroscopy. The SEM images exhibit a variety of the as-prepared hexagonal zinc oxides including wires, rods, particles and porous network of welded particles of ZnO nanoparticles. The results of the photocatalytic degradation of methylene blue as an... 

    Strain rate sensitivity, work hardening, and fracture behavior of an Al-Mg TiO2 nanocomposite prepared by friction stir processing [electronic resource]

    , Article Journal of Metallurgical and Materials Transactions A ; August 2014, Volume 45, Issue 9, P.4073-4088 Khodabakhshi, F ; Simchi, A. (Abdolreza) ; Kokabi, Amirhossein ; Nosko, Martin ; Svec, Peter ; Sharif University of Technology
    Abstract
    Annealed and wrought AA5052 aluminum alloy was subjected to friction stir processing (FSP) without and with 3 vol pct TiO2 nanoparticles. Microstructural studies by electron backscattered diffraction and transmission electron microscopy showed the formation of an ultra-fine-grained structure with fine distribution of TiO2 nanoparticles in the metal matrix. Nanometric Al3Ti and MgO particles were also observed, revealing in-situ solid-state reactions between Al and Mg with TiO2. Tensile testing at different strain rates determined that FSP decreased the strain rate sensitivity and work hardening of annealed Al-Mg alloy without and with TiO2 nanoparticles, while opposite results were obtained... 

    Incredible antibacterial activity of noble metal functionalized magnetic core-zeolitic shell nanostructures

    , Article Materials Science and Engineering C ; Volume 35, Issue 1 , Feb , 2014 , Pages 115-121 Padervand, M. (Mohsen) ; Janatrostami, S ; Karanji, A. K ; Gholami, M. R. (Mohamad Reza) ; Sharif University of Technology
    Abstract
    Functionalized magnetic core-zeolitic shell nanostructures were prepared by hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, nitrogen adsorption-desorption isotherms, and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles in the presence of organic templates was also confirmed. Antibacterial activity of the prepared nanostructures was investigated by the inactivation of Escherichia coli as a gram negative bacterium. A new mechanism was proposed for inactivation of E....