Loading...
Search for: nanosheets
0.007 seconds
Total 144 records

    Synthesis of Silica Nanosheets Using Droplet-based Microfluidics

    , M.Sc. Thesis Sharif University of Technology Tamtaji, Mohsen (Author) ; Mohammadi, Aliasghar (Supervisor)
    Abstract
    The main purpose of this project is synthesis of the silica nano-sheets by means of microfluidic techniques. Continuous process, precise control of reaction condition, and higher production rate can be considered as main pros of silica nano-sheets synthesized by microfluidic platforms. General method can be explain as follow: first two oleic and aqueous phase are injected to the microfluidic system, then oleic phase breaks down in aqueous phase drop-wisely and by performing sol-gel reaction on the oil-water interface a silica crust is made on oil droplets. Eventually, oil droplets are left the system and broken down and silica nano-sheets are made. FESEM and microscopic images of... 

    Synthesize and Characterization of 2D WS2 Nano-layers for Next Generation Optoelectronic Devices

    , M.Sc. Thesis Sharif University of Technology Rahmani Taji Boyuk, Mohammad Reza (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Transition Metal Dichalcogenids (TMD) are types of 2D materials that exibit wide range of electronic, optical, mechanical, chemical, and thermal properties. These materials with MX2 general formula, have atract attentions with respect to their unusual properties because of their very limited dimensions. Their tunable properties and materials availibility make them attractive for wide range of applications. In recent years, chemical vapor deposition (CVD) methods are promising in preparing high quality TMD with scalable size, controllable thickness, and very excellent electronic properties. Also, chalenges are remaining in synthesis and transfering of TMD are difficulty for most of... 

    Preparation of Nanocomposites from Carbon Nanostructures and Transtion Metal Oxides and their use in Preparation of Hybrid Electrochemical Capacitors

    , M.Sc. Thesis Sharif University of Technology Rahimi, Sajad (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, we report a new and simple procedure for preparing reduced graphene oxide /nickel, cobalt hydroxide composite (Ni,Co-OH/rGO/NF via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of Cetyl trimethyl ammonium bromide )CTAB( as a cationic surfactant. In the first step, a piece of nickel foam (NF) is sonicated in a suspension of graphene oxide (GO, 6 mg/L) after dried in an oven, reduced by electrochemically. After that, Ni, Co LDH were co-deposited on the surface of rGO/NF. The resulting modified electrode afforded extremely high specific capacitance of 2133.3 F/g at a current density of 4 A g-1. FE-SEM results showed that... 

    Evaluation and Optimization of Physical Properties of Graphene Oxide Nano Flakes to Confront Antibiotic Resistant Bacteria

    , M.Sc. Thesis Sharif University of Technology Najafi, Fahimeh (Author) ; Naseri, Naimeh (Supervisor)
    Abstract
    Antibacterial resistance towards existing antibiotics has become a major problem in medicine and health in recent years. Therefor it has become a challenge for scientists in different fields to find new antibiotics. Graphene and its derivatives, specially Graphene Oxide has gained attention in this area due to their unique physical properties. Graphene Oxide is considered to be a promising 2D nanomaterial for biomedical applications, due to its ease of production, stability in water, unique chemical and mechanical properties and its biocompatibility compared to other nanomaterials. In this study, graphene Oxide was synthesized using modified Hummers’ method. In order to investigate the... 

    Studying Graphene Oxide Nanoflakes Size Effect on Antibiotic Resistant Bacteria

    , M.Sc. Thesis Sharif University of Technology Homa, Kinza (Author) ; Naseri, Naimeh (Supervisor)
    Abstract
    Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Here we report the properties and application of 2Dnanomaterials in field of bio technology while used main material in our project is graphene oxide for investigating its antibacterial properties. Because the properties of graphene oxide (GO)-based materials strongly depend on the lateral size and size distribution of GO nanosheets; therefore, GO and its... 

    Synthesis, Characterization and Photoelectrochemical Application of two Dimensional MoS2 and WS2 Nanosheets

    , Ph.D. Dissertation Sharif University of Technology Zirak, Mohammad (Author) ; Zaker Moshfegh, AliReza (Supervisor) ; Moradlou, Omran (Co-Advisor)
    Abstract
    In this research, Synthesis, characterization and photoelectrochemical application of two dimensional MoS2 and WS2 nanosheets have been carefully investigated. And finally, based on theoritical and experimental analysis results, the mechanisms of the observed photoelectrochemical (PEC) activities were suggested.The ab initio density functional calculations about Mo1-xWxS2 monolayer deposited over a TiO2 (110) substrate revealed a shift in band position of the Mo1-xWxS2 in favor of photoelectrochemical water splitting. Moreover, increase of W concentration in Mo1-xWxS2 could improve the charge separation and increase the effective mass ratio leading to an extension of the electron–hole... 

    Copper Adsorption by Nanoadsorbents Based Graphene Oxide from Industrial Wastewater

    , M.Sc. Thesis Sharif University of Technology Pishnamazi, Mohammad (Author) ; Borghei, Mehdi (Supervisor) ; Ghasemi, Shahnaz (Co-Supervisor)
    Abstract
    In this thesis, a novel graphene oxide (GO)/sodium alginate (SA)/polyacrylamide (PAM) ternary nanocomposite hydrogel with excellent mechanical performance has been fabricated through freeradical polymerization of acrylamide (AAm) and SA in the presence of GO in an aqueous system followed with ionically crosslinking of calcium ions. Physical and chemical characteristics of the composite were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling behaviors of the composite hydrogels were investigated under varying conditions of time and pH. The optimized swelling capacity in standard conditions was found to be 1711% per gram of the hydrogel. The... 

    Direct growth of nickel-cobalt oxide nanosheet arrays on carbon nanotubes integrated with binder-free hydrothermal carbons for fabrication of high performance asymmetric supercapacitors

    , Article Composites Part B: Engineering ; Volume 172 , 2019 , Pages 41-53 ; 13598368 (ISSN) Hekmat, F ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A high performance asymmetric supercapacitor (ASC)has been fabricated by using nickel oxide-cobalt oxide nanosheets (NiO–CoO NSs), which were directly grown on carbon nanotubes (CNTs)and hydrothermal carbon spheres (HTCs)as positive and negative electrodes, respectively. Both electrode materials are binder-free prepared by using a catalytic chemical vapour deposition (CVD)approach followed by a facile hydrothermal method for cathode and a one-step environmental-friendly route called hydrothermal carbonization for anode. Using NiO–CoO NSs@CNTs and HTCs, which were directly grown on Ni foam, not only leads to a very small equivalent series resistance, but also provides an impressive capacitive... 

    SiO 2 -covered graphene oxide nanohybrids for in situ preparation of UHMWPE/GO(SiO 2 ) nanocomposites with superior mechanical and tribological properties

    , Article Journal of Applied Polymer Science ; Volume 136, Issue 31 , 2019 ; 00218995 (ISSN) Haddadi, S. A ; Saadatabadi, A. R ; Kheradmand, A ; Amini, M ; Ramezanzadeh, M ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    The modified Hummer technique was used in the preparation of graphene oxide (GO) nanosheets, and then SiO 2 decorated GO [GO(SiO 2 )] nanosheets were synthesized via the sol–gel method. Then, ultrahigh-molecular-weight polyethylene (UHMWPE) nanocomposites loaded with 0.5, 1, 1.5, and 2 wt % of GO(SiO 2 ) were prepared using magnesium ethoxide/GO(SiO 2 )-supported Ziegler–Natta catalysts via the in situ polymerization. Morphological study of the prepared polymer powders was assessed using field-emission scanning electron microscopy, which showed that GO(SiO 2 ) nanohybrids have been uniformly dispersed and distributed into the UHMWPE matrix. Also, the neat UHMWPE and its nanocomposites were... 

    Magnetoelectric nanocomposite scaffold for high yield differentiation of mesenchymal stem cells to neural-like cells

    , Article Journal of Cellular Physiology ; Volume 234, Issue 8 , 2019 , Pages 13617-13628 ; 00219541 (ISSN) Esmaeili, E ; Soleimani, M ; Ghiass, M. A ; Hatamie, S ; Vakilian, S ; Zomorrod, M. S ; Sadeghzadeh, N ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    While the differentiation factors have been widely used to differentiate mesenchymal stem cells (MSCs) into various cell types, they can cause harm at the same time. Therefore, it is beneficial to propose methods to differentiate MSCs without factors. Herein, magnetoelectric (ME) nanofibers were synthesized as the scaffold for the growth of MSCs and their differentiation into neural cells without factors. This nanocomposite takes the advantage of the synergies of the magnetostrictive filler, CoFe 2 O 4 nanoparticles (CFO), and piezoelectric polymer, polyvinylidene difluoride (PVDF). Graphene oxide nanosheets were decorated with CFO nanoparticles for a proper dispersion in the polymer through... 

    Advanced on-site glucose sensing platform based on a new architecture of free-standing hollow Cu(OH)2 nanotubes decorated with CoNi-LDH nanosheets on graphite screen-printed electrode

    , Article Nanoscale ; Volume 11, Issue 26 , 2019 , Pages 12655-12671 ; 20403364 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    The planned design of nanocomposites combined with manageable production processes, which can offer controllability over the nanomaterial structure, promises the practical applications of functional nanomaterials. Hollow core-shell nanostructure architectures represent an emerging category of advanced functional nanomaterials, whose benefits derived from their notable properties may be hampered by complicated construction processes, especially in the sensing domain. In this regard, we designed a highly porous three-dimensional array of hierarchical hetero Cu(OH)2@CoNi-LDH core-shell nanotubes via a quick, very simple, green, and highly controllable three-step in situ method; they were... 

    Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 179 , 2019 , Pages 495-504 ; 09277765 (ISSN) Habibi Jouybari, M ; Hosseini, S ; Mahboobnia, K ; Boloursaz, L. A ; Moradi, M ; Irani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present study, the tri-layer nanofibers were synthesized via triaxial electrospinning process to control the sustained delivery of Doxorubicin (DOX), Paclitaxel (PTX) and 5- fluorouracil (5-FU) anticancer drugs from nanofibers. The 5-FU molecules were incorporated into the core solution (chitosan/polyvinyl alcohol (CS/PVA)) to fabricate the CS/PVA/5-FU inner layer of nanofibers. The intermediate layer was prepared from poly(lactic acid)/chitosan (PLA/CS) nanofibers. The DOX and PTX molecules were initially loaded into the g-C3N4 nanosheets and following were incorporated into the PLA/CS solution to fabricate the outer layer of nanofibers. The synthesized nanosheets and nanofibers were... 

    High-Performance, flexible, all-solid-state wire-shaped asymmetric micro-supercapacitors based on three dimensional CoNi2S4 nanosheets decorated-nanoporous Ni-Zn-P Film/Cu wire

    , Article Journal of Physical Chemistry C ; Volume 123, Issue 35 , 2019 , Pages 21353-21366 ; 19327447 (ISSN) Shahrokhian, S ; Naderi, L ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Demand increasing for next generation portable and miniaturized electronics has aroused much interest to explore microscale and lightweight energy storage devices. Herein, we demonstrate successful development of flexible wire-shaped micro-supercapacitors (micro-SCs) based on novel CoNi2S4/E-NZP film@Cu wire electrode. The etched Ni-Zn-P (E-NZP) film was synthesized by directly deposition of NZP film on Cu wire, followed by a chemical etching process. Alkaline etching treatment provides a micro- and mesoporous structure with high surface area and facilitates the penetration of electrolyte ions into the electrode matrix. Then, CoNi2S4 nanosheets as electroactive material are electrochemically... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; Volume 206, Issue 4 , 2019 , Pages 495-508 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Covalently immobilized laccase onto graphene oxide nanosheets: Preparation, characterization, and biodegradation of azo dyes in colored wastewater

    , Article Journal of Molecular Liquids ; Volume 276 , 2019 , Pages 153-162 ; 01677322 (ISSN) Kashefi, S ; Borghei, S. M ; Mahmoodi, N. M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, graphene oxide (GO) was synthesized via modified Hummer's method and exploited as an ideal enzyme immobilization support due to its exclusive chemical and structural features. Then, laccase from genetically modified Aspergillus was covalently immobilized onto GO (nanobiocatalyst). Enzymatic characterization of the nanobiocatalyst exhibited promising results: laccase loading of 156.5 mg g−1 and immobilization yield of 64.6% at laccase concentration of 0.9 mg/ mL. Further employment of various structural characterization techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), Thermo-Gravimetric... 

    Fast and ultra-sensitive voltammetric detection of lead ions by two-dimensional graphitic carbon nitride (g-C3N4) nanolayers as glassy carbon electrode modifier

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 134 , 2019 , Pages 679-687 ; 02632241 (ISSN) Hatamie, A ; Jalilian, P ; Rezvani, E ; Kakavand, A ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Recently, graphitic carbon nitride (g-C3N4) has attracted great interest for photo(electro)chemical applications such as sensing, solar energy exploitation, photocatalysis, and hydrogen generation. This paper presents the potential application and benefits of g-C3N4 nanolayers as a green and highly efficient electrode modifier for the detection of trace lead ions in drinking water and urban dust samples. Carbon nitride nanosheets with a thickness of ∼6 A° and lateral of 100–150 nm were prepared through high-temperature polymerization of melamine followed by sonication-assisted liquid exfoliation. A glassy carbon electrode (GCE) was modified by a thin layer of g-C3N4 through drop casting and... 

    Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery

    , Article New Journal of Chemistry ; Volume 43, Issue 47 , 2019 , Pages 18647-18656 ; 11440546 (ISSN) Pourjavadi, A ; Kohestanian, M ; Yaghoubi, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Herein, we report the preparation of novel magnetic graphene oxide (GO) grafted with brush polymer via surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and its application as a nanocarrier for magnetic- and pH-triggered delivery of doxorubicin anticancer drug. The RAFT agent, DDMAT, was firstly attached to the surface of magnetic GO nanosheets. The DDMAT-functionalized magnetic GO nanosheets were then used to polymerize glycidyl methacrylate (GMA) using an SI-RAFT method. Afterwards, the epoxy rings of the PGMA chains were opened with hydrazine (N2H4) moieties. The resulting nanocomposite was used as a drug carrier for doxorubicin (DOX) as an... 

    Polyacrylamide-grafted magnetic reduced graphene oxide nanocomposite: preparation and adsorption properties

    , Article Colloid and Polymer Science ; 2019 ; 0303402X (ISSN) Pourjavadi, A ; Nazari, M ; Kohestanian, M ; Hosseini, S. H ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Magnetic reduced graphene oxide/polymer nanocomposites were prepared by in situ polymerization and grafting of polyacrylamide on the surface of functionalized magnetic reduced graphene oxide (rGO). Graphene oxide nanosheets were decorated with Fe3O4 nanoparticles, reduced and functionalized with 3-(trimethoxysilyl)propyl methacrylate, and then grafted with polyacrylamide. Grafting of polyacrylamide makes magnetic rGO hydrophilic and highly water dispersible. The prepared material was used as adsorbent for removal of an anionic dye, Congo red, and a maximum adsorption capacity up to 166.7 mg g−1 was obtained. The kinetics and isotherm of adsorption and the effect of experimental condition on... 

    Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery

    , Article New Journal of Chemistry ; Volume 43, Issue 47 , 2019 , Pages 18647-18656 ; 11440546 (ISSN) Pourjavadi, A ; Kohestanian, M ; Yaghoubi, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Herein, we report the preparation of novel magnetic graphene oxide (GO) grafted with brush polymer via surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and its application as a nanocarrier for magnetic- and pH-triggered delivery of doxorubicin anticancer drug. The RAFT agent, DDMAT, was firstly attached to the surface of magnetic GO nanosheets. The DDMAT-functionalized magnetic GO nanosheets were then used to polymerize glycidyl methacrylate (GMA) using an SI-RAFT method. Afterwards, the epoxy rings of the PGMA chains were opened with hydrazine (N2H4) moieties. The resulting nanocomposite was used as a drug carrier for doxorubicin (DOX) as an... 

    Effect of graphene oxide on morphological and structural properties of graphene reinforced novolac-derived carbon aerogels: A modified Quasi-Percolation Model

    , Article Ceramics International ; Volume 46, Issue 8 , 2020 , Pages 11179-11188 Alizadeh, O ; Madaah Hosseini, H. M ; Pourjavadi, A ; Bahramian, A. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Graphene reinforced polymer derived carbon (carbon/graphene) aerogels were synthesized by carbonization of novolac/graphene oxide aerogels. Novolac/graphene oxide aerogels were synthesized using solvent-saturated-vapor-atmosphere technique. To this aim, 20 wt% solution of novolac resin with 0, 2, and 5 wt% graphene oxide in 2-propanol were made and were cured in an autoclave. Wet aerogels were dried in air and were carbonized at 800 °C in nitrogen atmosphere. Eliminating the time-consuming methods of drying like supercritical and freeze drying is one of the advantages of this method of synthesis of organic aerogles. Fourier transform infrared spectroscopy, field emission scanning electron...