Loading...
Search for: nanosheets
0.007 seconds
Total 144 records

    Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 1098-1104 ; 09284931 (ISSN) Asadian, E ; Iraji Zad, A ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable... 

    Hierarchical core-shell structure of ZnO nanotube/MnO2 nanosheet arrays on a 3D graphene network as a high performance biosensing platform

    , Article RSC Advances ; Volume 6, Issue 66 , 2016 , Pages 61190-61199 ; 20462069 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji zad, A ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    A hierarchical core-shell structure composed of ZnO nanotubes/MnO2 nanosheets was fabricated via a two-step electrochemical deposition procedure on the surface of a 3D graphene network (3DGN) as a free-standing monolithic electrode. In the first step, ZnO nanorod arrays were grown on the surface of a 3DGN followed by electrochemical deposition of MnO2 nanosheets in the next step, which caused the inner parts of initial ZnO nanorods to etch away and resulted in the formation of ZnO nanotubes (ZnO NTs). The highly porous interconnected graphene backbone offers very high conductivity and a large accessible surface area. On the other hand, the formation of ZnO nanotubes can enhance the... 

    Fabrication and surface stochastic analysis of enhanced photoelectrochemical activity of a tuneable MoS2-CdS thin film heterojunction

    , Article RSC Advances ; Volume 6, Issue 20 , 2016 , Pages 16711-16719 ; 20462069 (ISSN) Zirak, M ; Ebrahimi, M ; Zhao, M ; Moradlou, O ; Samadi, M ; Bayat, A ; Zhang, H. L ; Moshfegh, A. Z ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A very simple and well-controlled procedure was employed to prepare CdS nanoparticle/few-layer MoS2 nanosheet/Indium tin oxide (ITO) thin film heterostructures. To tune and fabricate the CdS/MoS2(t)/ITO thin films with various surface topographies, first electrophoretic deposition (EPD) was used to deposit MoS2 nanosheets on the ITO substrate under an optimized applied potential difference (8 V) for different deposition times (t) of 30, 60, 120 and 240 s. Then, CdS nanoparticles were deposited via a successive ion layer adsorption and reaction (SILAR) technique. The highest photo-current density of 285 μA cm-2 was measured for the CdS/MoS2(60 s)/ITO sample, which was about 2.3 times higher... 

    Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 146 , 2016 , Pages 770-776 ; 09277765 (ISSN) Hashemi, E ; Akhavan, O ; Shamsara, M ; Daliri, M ; Dashtizad, M ; Farmany, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The present study analyzed the dose-dependent cyto- and genotoxicity of graphene oxide and reduced graphene oxide on spermatogonial stem cells (SSCs) for the first time. The results showed that graphene oxide significantly increased oxidative stress at concentrations of 100 and 400 μg/ml, while low concentrations did not have a significant effect. In addition, according to the MTT assay, the cell number decreased in high-concentration (100 and 400 μg/ml) graphene oxide-treated samples compared to untreated cells. However, a reduced graphene-treated sample demonstrated a significant increase in cell number. Moreover, microscopic analysis found high concentrations of graphene nanosheets in... 

    Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites

    , Article Composites Part A: Applied Science and Manufacturing ; Volume 85 , 2016 , Pages 113-122 ; 1359835X (ISSN) Azarniya, A ; Eslahi, N ; Mahmoudi, N ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this work, novel chitosan/bacterial cellulose (CS/BC) nanofibrous composites reinforced with graphene oxide (GO) nanosheets are introduced. As cell attachment and permeability of nanofibrous membranes highly depend on their fiber diameter, the working window for successful electrospinning to attain sound nanofibrous composites with a minimum fiber diameter was determined by using the response surface methodology. It is shown that the addition of GO nanosheets to CS/BC significantly reduces the average size of the polymeric fibers. Their mechanical properties are also influenced and can be tailored by the concentration of GO. Fourier transform infrared spectroscopy reveals hydrogen bonding... 

    BiPO4 photocatalyst employing synergistic action of Ag/Ag3PO4 nanostructure and graphene nanosheets

    , Article Solid State Sciences ; Volume 56 , 2016 , Pages 10-15 ; 12932558 (ISSN) Mohaghegh, N ; Rahimi, E ; Sharif University of Technology
    Elsevier Masson SAS 
    Abstract
    Graphene-supported BiPO4/Ag/Ag3PO4 photocatalyst has been fabricated by simple hydrothermal and impregnation reaction. In BiPO4/Ag/Ag3PO4 based on Reduced Graphene Oxide (RGO), this network renders numerous pathways for rapid mass transport, strong adsorption and multireflection of incident light; meanwhile, the interface between BiPO4/Ag/Ag3PO4 and RGO increases the active sites and electron transfer rate. BiPO4/Ag/Ag3PO4 based on RGO noticeably exhibited high photocatalytic activity than that of BiPO4/Ag/Ag3PO4 and P25 under visible light irradiation for cationic dye (Rhodamine B), anionic dye (methyl orange) and 4-chlorophenol (4-CP) as a neutral pollutant, which are usually difficult to... 

    Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 47 , 2009 , Pages 20214-20220 ; 19327447 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    Abstract
    Graphene oxide platelets synthesized by using a chemical exfoliation method were deposited on anatase TiO2 thin films. Postannealing of the graphene oxide/TiO2 thin films at 400 °C in air resulted in partial formation of a Ti-C bond between the platelets and their beneath thin film. By using atomic force microscopy and X-ray photoelectron spectroscopy analyses, UV-visible light-induced photocatalytic reduction of the graphene oxide platelets of the annealed graphene oxide/TiO2. thin films immersed in ethanol was studied for the different irradiation times. After 4 h of photocatalytic reduction, the vertical space between the platelets decreased from about 1.1 to less than 0.8 nm and the... 

    Physicochemical and antibacterial properties of chitosan-polyvinylpyrrolidone films containing self-organized graphene oxide nanolayers

    , Article Journal of Applied Polymer Science ; Volume 133, Issue 11 , 2016 ; 00218995 (ISSN) Mahmoudi, N ; Ostadhossein, F ; Simchi, A ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Abstract
    Chitosan films have a great potential to be used for wound dressing and food-packaging applications if their physicochemical properties including water vapor permeability, optical transparency, and hydrophilicity are tailored to practical demands. To address these points, in this study, chitosan (CS) was combined with polyvinylpyrrolidone (PVP) and graphene oxide (GO) nanosheets (with a thickness of ∼1 nm and lateral dimensions of few micrometers). Flexible and transparent films with a high antibacterial capacity were prepared by solvent casting methods. By controlling the evaporation rate of the utilized solvent (1 vol % acidic acid in deionized water), self-organization of GO in the... 

    The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets

    , Article Biomedical Materials (Bristol) ; Volume 11, Issue 2 , 2016 ; 17486041 (ISSN) Mahmoudifard, M ; Soleimani, M ; Hatamie, S ; Zamanlui, S ; Ranjbarvan, P ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were... 

    Self-limited growth of large-area monolayer graphene films by low pressure chemical vapor deposition for graphene-based field effect transistors

    , Article Ceramics International ; Volume 43, Issue 17 , 2017 , Pages 15010-15017 ; 02728842 (ISSN) Kiani, F ; Razzaghi, Z ; Ghadiani, B ; Tamizifar, M ; Mohmmadi, M. H ; Simchi, A ; Sharif University of Technology
    Abstract
    During the last decade, fabrication of high-quality graphene films by chemical vapor deposition (CVD) for nanoelectronics and optoelectronic applications has attracted increasing attention. However, processing of large-area monolayer and defect-free graphene films is still challenging. In this work, we have studied the effect of processing conditions on the self-limited growth of graphene monolayers on copper foils during low pressure CVD both experimentally and theoretically based on thermokinetics and kinetics of Langmuir adsorption. The effect of copper pre-treatment, growth time, and carbon potential of the atmosphere (indicated by the methane-to-hydrogen gas ratio, r) on the quality of... 

    Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method

    , Article Ultrasonics Sonochemistry ; Volume 39 , 2017 , Pages 188-196 ; 13504177 (ISSN) Amini, M ; Ramazani S. A. A ; Faghihi, M ; Fattahpour, S ; Sharif University of Technology
    Abstract
    Molybdenum disulfide (MoS2), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form S[dbnd]O bonds mainly because of expected enhanced... 

    AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4-nitrophenol: studies of kinetics and mechanism

    , Article Applied Organometallic Chemistry ; Volume 31, Issue 11 , 2017 ; 02682605 (ISSN) Kohantorabi, M ; Gholami, M. R ; Sharif University of Technology
    Abstract
    AgxPt100−x (x = 0, 25, 50, 75 and 100) nanoparticles were grown on the surface of magnetic graphene oxide nanosheets (Fe3O4@GO) for the first time. The as-prepared nanocomposites were characterized using various techniques such as Fourier transform infrared spectroscopy, powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, vibrating sample magnetometry and thermogravimetric analysis. The Fe3O4@GO-AgxPt100−x catalysts were applied in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol using sodium borohydride (NaBH4). The synthesized nanocomposites... 

    In-situ fabrication of nanosheet arrays on copper foil as a new substrate for binder-free high-performance electrochemical supercapacitors

    , Article Journal of Electroanalytical Chemistry ; Volume 802 , 2017 , Pages 48-56 ; 15726657 (ISSN) Mohammadi, R ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    A facile hydrothermal method and subsequent electroactivation have been developed to fabricate three-dimensional (3D) CuO nanosheet arrays on the copper foil substrate, which can be used directly as a binder-free electrode for supercapacitor applications. Under optimum conditions, by using this facile method, a high capacitance of 125 mF/cm2 at a current density of 0.3 mA/cm2 is obtained. The prepared supercapacitor showed a good rate capability (46.4% capacitance retention, when the current density is increased to more than 30 times) and an excellent cyclability (more than 88% capacitance retention after 3000 cycles). © 2017 Elsevier B.V  

    Plasma surface functionalization of boron nitride nano-sheets

    , Article Diamond and Related Materials ; Volume 77 , 2017 , Pages 110-115 ; 09259635 (ISSN) Achour, H ; Achour, A ; Solaymani, S ; Islam, M ; Vizireanu, S ; Arman, A ; Ahmadpourian, A ; Dinescu, G ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    On silicon substrates, boron nitride nanosheets (BNNS) consisting of interconnected hexagonal boron nitride nano-layers were produced via chemical vapor deposition process at 1200 °C whose roughness's are at the micrometer- and nanometer-scale. The BNNS were functionalized in argon plasma admixed with ammonia or nitrogen or oxygen. The samples were characterized to investigate the surface chemistry and structural changes after plasma treatment using X-ray photoelectron spectroscope and Micro-Raman spectroscope techniques, respectively. While no significant changes in the surface features, upon plasma treatments of the BNNS, were noticed during SEM and TEM examination, the oxygen functional... 

    Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models

    , Article Journal of Materials Science: Materials in Medicine ; Volume 28, Issue 5 , 2017 , 73 ; 09574530 (ISSN) Mahmoudi, N ; Eslahi, N ; Mehdipour, A ; Mohammadi, M ; Akbari, M ; Samadikuchaksaraei, A ; Simchi, A ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Abstract: In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were... 

    Morphologically tailored CuO photocathode using aqueous solution technique for enhanced visible light driven water splitting

    , Article Journal of Photochemistry and Photobiology A: Chemistry ; Volume 337 , 2017 , Pages 54-61 ; 10106030 (ISSN) Kushwaha, A ; Moakhar, R. S ; Goh, G. K. L ; Dalapati, G. K ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Cupric oxide (CuO) nanostructures are grown on fluorine doped tin oxide (FTO) coated glass substrate using aqueous solution approach. The concentration of precursor's solution has significant impact on morphology of CuO nanostructure. By varying concentration of precursor, the growth of two different morphologies (oriented nanosheets and nanoleaves) is achieved. X-ray diffraction pattern and X-ray photoelectron spectroscopy reveals formation of pure CuO crystalline phase. Mott-Schottky characteristic confirms the p-type semiconducting nature. Ultrathin structures of nanoleaves lead to higher light trapping and light absorption in visible-NIR region. The nanoleaves film has lower bandgap in... 

    Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field

    , Article Powder Technology ; Volume 308 , 2017 , Pages 149-157 ; 00325910 (ISSN) Mehrali, M ; Sadeghinezhad, E ; Akhiani, A. R ; Tahan Latibari, S ; Metselaar, H. S. C ; Kherbeet, A. S ; Mehrali, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The heat transfer characteristics and entropy generation rate of hybrid graphene-magnetite nanofluids under forced laminar flow that subjected to the permanent magnetic fields were investigated. For this purpose, a nanoscale reduced graphene oxide-Fe3O4 hybrid was synthesized by using graphene oxide, iron salts and tannic acid as the reductant and stabilizer. The thermophysical and magnetic properties of the hybrid nanofluid have been widely characterized and thermal conductivity has shown an enhancement of 11%. The experimental results indicated that the heat transfer enhancement of hybrid magnetite nanofluid compared to the case of distilled was negligible when no magnetic field was... 

    Kinetic study of navy blue photocatalytic degradation over Ag3PO4/BiPO4@MIL-88B(Fe)@g-C3N4 core@shell nanocomposite under visible light irradiation

    , Article New Journal of Chemistry ; Volume 41, Issue 18 , 2017 , Pages 10390-10396 ; 11440546 (ISSN) Gholizadeh Khasevani, S ; Mohaghegh, N ; Gholami, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Herein, a novel quaternary Ag3PO4/BiPO4@MIL-88B(Fe)@g-C3N4 (AB@MIL-88B(Fe)@g-CN) nanocomposite with a core@shell structure is successfully fabricated in two simple steps. The prepared samples are characterized via various techniques. The photocatalytic activity of the prepared samples is evaluated by the degradation of navy Acid Blue 92 (AB92) dye as an organic pollutant under visible light irradiation. Highly enhanced photocatalytic efficiency is observed for the quaternary AB@MIL-88B(Fe)@g-CN nanocomposite compared to that for the other samples. The experimental results indicate that the photocatalytic activity enhancement is mainly attributed to the strong visible light absorption and... 

    Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors

    , Article Sensors and Actuators, B: Chemical ; Volume 251 , 2017 , Pages 462-471 ; 09254005 (ISSN) Mazaheri, M ; Aashuri, H ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    We present a novel hybrid electrode based on reduced graphene oxide/nickel/zinc oxide heterostructures. The sensor was fabricated by template-free hydrothermal growth of ZnO nanorod arrays on conductive glass substrates (FTO) followed by conformal electrodeposition of nickel nanoparticles with an average size of 18 nm. Then, in-situ reduction and electrophoretic deposition of graphene oxide (GO) nanosheets on the structured ZnO/Ni electrode was performed. The prepared three-dimensional nanostructure exhibited fast electrocatalytic response (<3 s) towards glucose oxidation due to the large surface area and high electro-activity. The prepared biosensor possessed a wide linear range over... 

    On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 121-131 ; 09284931 (ISSN) Mahmoudi, N ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Nanofibrous structures that mimic the native extracellular matrix and promote cell adhesion have attracted considerable interest for biomedical applications. In this study, GO-modified nanofibrous biopolymers (GO) were prepared by electrospinning blended solutions of chitosan (80 vol%), polyvinyl pyrrolidone (15 vol%), polyethylene oxide (5 vol%) containing GO nanosheets (0–2 wt%). It is shown that GO nanosheets significantly change the conductivity and viscosity of highly concentrated chitosan solutions, so that ultrafine and uniform fibers with an average diameter of 60 nm are spinnable. The GO-reinforced nanofibers with controlled pore structure exhibit enhanced elastic modulus and...