Loading...
Search for: nanoparticles
0.019 seconds
Total 1926 records

    FeCl2/FeCl3 perlite nanoparticles as a novel magnetic material for adsorption of green malachite dye

    , Article Arabian Journal for Science and Engineering ; Volume 39, Issue 5 , May , 2014 , Pages 3383-3392 ; ISSN: 13198025 Heydartaemeh, M. R ; Doulati Ardejani, F ; Badii, K ; Seifpanahi Shabani, K ; Mousavi, S. E ; Sharif University of Technology
    Abstract
    In this research FeCl2/FeCl3/Perlite magnetic nanoparticles (FeCl2/FeCl3/PMNs), as a novel magnetic nanocomposite adsorbent was used for the removal of green malachite (GM) dye from aqueous solution in a batch and fixed bed column. Firstly, FeCl2/FeCl3/PMNs adsorption properties were investigated. Therefore, the solution of FeCl2·4H2O and FeCl3·6H2O by ratio 2/1 was mixed with perlite nanoparticles. The study investigates the effect of process parameters such as pH, adsorbent dosage, contact time and GM dye initial concentration. Next, GM dye was quantitatively evaluated by using the Langmuir, Freundlich and BET isotherms and pseudo-first- and pseudo-second-order kinetic model. The... 

    Adsorption characteristics of malachite green dye onto novel kappa-carrageenan-g-polyacrylic acid/TiO2-NH2 hydrogel nanocomposite

    , Article Journal of the Iranian Chemical Society ; Volume 11, Issue 4 , August 2014 , Pages 1057-1065 Pourjavadi, A ; Doulabi, M ; Doroudian, M ; Sharif University of Technology
    Abstract
    Batch adsorption experiments were carried out for the removal of malachite green (MG) cationic dye from aqueous solution using novel hydrogel nanocomposite that was prepared by graft copolymerization of acrylic acid (AA) onto kappa-carrageenan (κC) biopolymer in the presence of a crosslinking agent, a free radical initiator and aminosilica-functionalized TiO2 nanoparticles (κC-g-PAA/TiO2-NH2). The factors influencing adsorption capacity of the adsorbents such as initial pH value (pH0) of the dye solutions, TiO2-NH2 content (wt%), initial concentration of the dye, amount of adsorbents, and temperature were investigated. The adsorption capacity of hydrogel nanocomposite for MG was compared... 

    Double-Layer TiO2 Electrodes with Controlled Phase Composition and Morphology for Efficient Light Management in Dye-Sensitized Solar Cells

    , Article Journal of Cluster Science ; Vol. 25, issue. 4 , 2014 , p. 1029-1045 Abdi-Jalebi, M ; Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    Abstract
    The light-scattering effect in the dye-sensitized solar cells (DSCs) was studied by controlling TiO2 phase composition and morphology by fabrication of double-layer cells with different arrangement modes. The starting material for preparation of TiO2 cells was synthesized by an aqueous sol-gel process. X-ray diffraction and field emission scanning electron microscopic analyses revealed that TiO2 nanoparticles had particle size ranging between 18 and 44 nm. The optical property and band gap energy of TiO2 nanoparticles were studied through UV-Vis absorption. The indirect optical band gap energy of anatase and rutile nanoparticles was found to be 3.47 and 3.41 eV, respectively. The... 

    A colorimetric assay for d-Penicillamine in urine and plasma samples based on the aggregation of gold nanoparticles

    , Article Journal of the Iranian Chemical Society ; Vol. 11, issue. 5 , Dec , 2014 , p. 1249-1255 Hormozi-Nezhad, M. R ; Azargun, M ; Fahimi-Kashani, N ; Sharif University of Technology
    Abstract
    We report herein the development of a highly sensitive colorimetric method for detection of d-Penicillamine using citrate-capped gold nanoparticles (AuNPs). This assay relies upon the distance-dependent of gold nanoparticles surface plasmon resonance band of gold nanoparticles. By replacing the thiol-containing chelator drug, d-Penicillamine, with citrate on the gold nanoparticles surface, a new peak appearing at a longer wavelength intensifies and shifts further to the red from the original peak position due to aggregation of gold nanoparticles which depends on ionic strength, gold nanoparticles and d-Penicillamine concentration. During this process, the plasmon band at 521 nm decreases... 

    Magnetic labelled horseradish peroxidase-polymer nanoparticles: A recyclable nanobiocatalyst

    , Article Journal of the Serbian Chemical Society ; Volume 78, Issue 7 , 2013 , Pages 921-931 ; 03525139 (ISSN) Khosravi, A ; Vossoughi, M ; Shahrokhian, S ; Alemzadeh, I ; Sharif University of Technology
    2013
    Abstract
    In this study, the reusability and process stability of nano-reengineered horseradish peroxidase was investigated in a fluorescence-based sensing system for hydrogen peroxide determination as a model application. To this end, dendron macromolecules were attached to the enzyme surface through bio-conjugation techniques. The resulting enzyme-polymer nanoparticles, with an average size of 14(±2) nm, showed significant life time and thermal stability. For enzyme recovery and reusability purposes, the enzyme-polymer nanoparticles were labelled with magnetic nanoparticles with a labelling yield of 90 %. These labelled enzyme molecules showed significant process stability, i.e., up to 7 recycling... 

    Direct electron transfer of myoglobin on CdO nanoparticles modified glassy carbon electrode

    , Article International Journal of Electrochemical Science ; Volume 8, Issue 5 , 2013 , Pages 7345-7356 ; 14523981 (ISSN) Mohammadi, N ; kakavandi, Y. G ; Movassagh, A. A ; Nasereslami, S ; Mohseni, G ; Hajiosseinlo, A ; Sofimaryo, L ; Soleimani, R ; Akbari-dastjerdi, H ; Negahdary, M ; Sharif University of Technology
    2013
    Abstract
    In this study, direct electron transfer of myoglobin (Mb) on cadmium oxide (CdO) nanoparticles modified glassy carbon electrode (GCE) was investigated. Prepared CdO nanoparticles were studied by X-Ray diffraction (XRD) and UV-visible absorption methods. All electrochemical studies were performed by cyclic voltammetry (CV) and a potentiostat device. The cyclic voltammogram of Mb/ CdO Nps/ GCE showed a couple of stable redox and oxidative peaks at -470 and -370 mV at scan rate of 50 mVs-1, respectively. The formal potential (Eo) of myoglobin was calculated as -(420 ± 3) mV. Direct electrode transfer led to design a biosensor for determination of hydrogen peroxide (H2O2). The sensor sensitivity... 

    Amplified electrochemical DNA sensor based on polyaniline film and gold nanoparticles

    , Article Electroanalysis ; Volume 25, Issue 6 , 2013 , Pages 1373-1380 ; 10400397 (ISSN) Saberi, R. S ; Shahrokhian, S ; Marrazza, G ; Sharif University of Technology
    2013
    Abstract
    In this work, an electrochemical DNA biosensor, based on a dual signal amplified strategy by employing a polyaniline film and gold nanoparticles as a sensor platform and enzyme-linked as a label, for sensitive detection is presented. Firstly, polyaniline film and gold nanoparticles were progressively grown on graphite screen-printed electrode surface via electropolymerization and electrochemical deposition, respectively. The sensor was characterized by scanning electron microscopy (SEM), cyclic voltammetry and impedance measurements. The polyaniline-gold nanocomposite modified electrodes were firstly modified with a mixed monolayer of a 17-mer thiol-tethered DNA probe and a spacer thiol,... 

    Comparison of different strategies for the assembly of gold colloids onto Fe3O4@SiO2 nanocomposite particles

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 49 , 2013 , Pages 30-38 ; 13869477 (ISSN) Mohammad Beigi, H ; Yaghmaei, S ; Roostaazad, R ; Arpanaei, A ; Sharif University of Technology
    2013
    Abstract
    Three strategies were employed for the assembly of gold nanoparticles on silica-coated magnetite particles (SCMPs). In strategy I, citrate-coated gold nanoparticles were attached on the surface of amine-SCMPs. In strategy II, amine-SCMPs were coated with carboxylated gold nanoparticles via amide bond formation. In strategy III, the thiol-SCMPs surface was coated with gold nanoparticles. Among the above examined strategies, coating amine-SCMPs with gold nanoparticles via strategy I resulted in a better coverage and stronger intensity of absorption bands. Furthermore, results obtained through strategy I showed that decreasing the pH of the solution from 7 to 3 leads to a further red-shift of... 

    Highly sensitive turn-on fluorescent detection of captopril based on energy transfer between fluorescein isothiocyanate and gold nanoparticles

    , Article Journal of Luminescence ; Volume 134 , 2013 , Pages 874-879 ; 00222313 (ISSN) Hormozi Nezhad, M. R ; Bagheri, H ; Bohloul, A ; Taheri, N ; Robatjazi, H ; Sharif University of Technology
    2013
    Abstract
    A novel approach for highly sensitive detection of captopril was developed based on the fluorescence resonance energy transfer (FRET) between gold nanoparticles (Au NPs) and fluorescein isothiocyanate (FITC), in which FITC acts as the donor and Au NPs as the acceptor. The fluorescence intensity of fluorescein isothiocyanate (FITC) was strictly quenched as a result of noncovalently adsorbed on Au NPs. Upon the addition of captopril, the fluorescence intensity of FITC turn-on due to the competition between captopril and FITC towards the surface of Au NPs. Under the optimum conditions, the fluorescence intensity of the released FITC displays a linear relationship in the range of 20 μg L-1 to... 

    Nanodiamond Decorated with Silver Nanoparticles as a Sensitive Film Modifier in a Jeweled Electrochemical Sensor: Application to Voltammetric Determination of Thioridazine

    , Article Electroanalysis ; Volume 25, Issue 2 , 2013 , Pages 417-425 ; 10400397 (ISSN) Shahrokhian, S ; Hosseini Nassab, N ; Sharif University of Technology
    2013
    Abstract
    Nanodiamond-graphite (NDG) decorated with Ag nanoparticles (AgNPs-NDG) was prepared and used to construct a novel sensitive sensor for the voltammetric determination of thioridazine (TR). The results indicate a remarkable increase in the oxidation peak currents together with a negative shift in the oxidation peak potentials, in comparison to the bare pyrolytic graphite electrode. Remarkable enhancement in microscopic area of the electrode along with strong adsorption of TR on the surface of the modified electrode resulted in a considerable increase in the peak current of TR. The surface morphology and the nature of the composite film deposited on PGE were characterized by scanning electron... 

    Optical detection of some hydrazine compounds based on the surface plasmon resonance band of silver nanoparticles

    , Article Spectroscopy Letters ; Volume 46, Issue 1 , 2013 , Pages 73-80 ; 00387010 (ISSN) Tashkhourian, J ; Hormozi Nezhad, M. R ; Fotovat, M ; Sharif University of Technology
    2013
    Abstract
    An indirect colorimetric method is presented for spectrophotometric determination of hydrazine, phenylhydrazine, and isoniazid. Reduction of silver ions to silver nanoparticles (AgNPs) by these analytes as active reducing agents in the presence of polyvinylpyrrolidone (PVP) and also cetyltrimethylammonium chloride (CTAC) as a stabilizer is the basis of the proposed method. The changes in plasmon absorbance of the AgNPs at λ = 415 nm in the presence of PVP were proportional to concentration of hydrazine, phenylhydrazine, and isoniazid in the ranges of 4.0-150.0 μM, 1.0-55.0 μM, and 2.0-30.0 μM, respectively, and the detection limit obtained was 0.79 μM. In the presence of CTAC, the linear... 

    Photocatalytic decolorization of methylene blue using immo bilized ZnO nanoparticles prepared by solution combustion method

    , Article Desalination and Water Treatment ; Volume 44, Issue 1-3 , May , 2012 , Pages 174-179 ; 19443994 (ISSN) Rezaee, A ; Masoumbeigi, H ; Soltani, R. D. C ; Khataee, A. R ; Hashemiyan, S ; Sharif University of Technology
    Taylor and Francis Inc  2012
    Abstract
    Photocatalytic decolorization of methylene blue (MB) in aqueous solution was investigated using ZnO nanoparticles immobilized on glass plate. The ZnO nanoparticles were prepared by solution combustion method (SCM) using zinc nitrate as oxidant and glycine as fuel. In the slurry ZnO system the separation and recycling of the photocatalyst is practically difficult. Thus, the ZnO nanoparticles were immobilized on glass supports to solve this problem. The effects of process parameters like, catalyst loading, initial dye concentration, and UV-radiation intensity have been investigated. The best results of MB removal were reported in the 1800 μW cm-2 UVC using two layers immobilized ZnO... 

    Pyrolytic graphite electrode modified with a thin film of a graphite/diamond nano-mixture for highly sensitive voltammetric determination of tryptophan and 5-hydroxytryptophan

    , Article Microchimica Acta ; Volume 174, Issue 3 , 2011 , Pages 361-366 ; 00263672 (ISSN) Shahrokhian, S ; Bayat, M ; Sharif University of Technology
    2011
    Abstract
    We have prepared a pyrolytic graphite electrode (PGE) whose surface is covered with a thin film of a nano-mixture of graphite/diamond (NGD). The electrode is shown to be capable of electrochemically sensing of tryptophan (TRP) and 5-hydroxytryptophan (HTRP). The presence of the NGD film resulted in a remarkable increase in the peak currents and sharpness of the waves so that submicromolar concentrations of TRP and HTRP become detectable. Potential scan rates, the pH of the solution, the accumulation conditions and the amount of the modifier were optimized via cyclic voltammetry. Linear sweep voltammetry, under optimized accumulation time and in open circuit operation, was applied to the... 

    Sensitive electrochemical sensor for determination of methyldopa based on polypyrrole/carbon nanoparticle composite thin film made by in situ electropolymerization

    , Article Electroanalysis ; Volume 23, Issue 9 , 2011 , Pages 2248-2254 ; 10400397 (ISSN) Shahrokhian, S ; Saberi, R. S ; Kamalzadeh, Z ; Sharif University of Technology
    2011
    Abstract
    A composite surface coating is prepared by electropolymerization of a mixture of pyrrole and carbon nanoparticles onto a glassy carbon electrode (GCE). The microscopic structure and morphology of the composite film is characterized by scanning electron microscopy. The modified electrode offers a considerable improvement in voltammetric sensitivity toward methyldopa (m-dopa), compared to the bare and polypyrrole-coated GCEs. A significantly enhanced anodic peak current together with a remarkable increase in sharpness of the cyclic voltammetric (CV) signals are observed for the detection of m-dopa. The effect of experimental parameters, such as scan rate and pH, are investigated by monitoring... 

    Molecular dynamics simulation of manipulation of metallic nanoclusters on stepped surfaces

    , Article Central European Journal of Physics ; Volume 9, Issue 2 , 2011 , Pages 454-465 ; 18951082 (ISSN) Mahboobi, S. H ; Meghdari, A ; Jalili, N ; Amiri, F ; Sharif University of Technology
    Abstract
    Molecular dynamics simulations are carried out to investigate the manipulation of metallic clusters on stepped surfaces. Five surface forms are considered in the simulations. The system parts are made of pure transition metals and Sutton-Chen many-body potential is used as interatomic potential. The conditions which are subjected to change in the tests include: materials used for particles and substrate, and surface step conditions. In addition to qualitative observations, two criteria which represent the particle deformation and substrate abrasion are utilized as evaluation tools and are computed for each case. Simulation results show the effect of the aforementioned working conditions on... 

    In vitro study of bare and poly (ethylene glycol)-co-fumarate coated superparamagnetic iron oxide nanoparticles for reducing potential risks to humans and the environment

    , Article Handbook of Sustainable Energy ; May , 2011 , Pages 649-666 ; 9781608762637 (ISBN) Mahmoudi, M ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Shivaee, H. A ; Sharif University of Technology
    Nova Science Publishers, Inc  2011
    Abstract
    For risk free application of nanoparticles in life science, energy and the environment, it is essential to understand their biological fate and potential toxicity. The application of iron oxide nanoparticles for drug delivery has been one of the most promising researches in the field of nanotechnology. However, there are two major problems associated with magnetically targeted deliveries that still need close attention: • As the drug is coated on to the particle surfaces, there is the possibility of faster drug release (Burst Effect). Therefore, after reaching to the specific site, there is very low amount of drug for delivery. To overcome this problem, some researchers have used conjugation... 

    A novel screen-printed TiO2 photoelectrochemical sensor for direct determination and reduction of hexavalent chromium

    , Article Electrochemistry Communications ; Volume 61 , 2015 , Pages 110-113 ; 13882481 (ISSN) Siavash Moakhar, R ; Goh, G. K. L ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    A novel and simple photoelectrochemical (PEC) sensor to detect Cr(VI) based on screen-printed TiO2 modified with gold nanoparticles is presented. The proposed PEC sensor showed a very low detection limit (S/N = 3) of 0.004 μM, over a wide linear concentration range from 0.01 μM to 100 μM with a high sensitivity of 11.88 μA.μM-1 Cr(VI). Results also indicated good anti-interference and superb recovery in natural media application for Cr(VI) sensing  

    Aggregates of plasmonic nanoparticles for broadband light trapping in dye-sensitized solar cells

    , Article Journal of Optics (United Kingdom) ; Volume 18, Issue 1 , November , 2015 ; 20408978 (ISSN) Sharifi, N ; Dabirian, A ; Danaei, D ; Taghavinia, N ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Metallic nanoparticles (NPs) have not been effective in improving the overall performance of the cells with micrometer-thick absorbing layers mainly due to the parasitic optical dissipation in the metal. Here, using both experiment and theory, we demonstrate that aggregates of metallic NPs enhance the light absorption of dye-sensitized solar cells of a few micrometer-thick light absorbing layers. The composite electrode containing the optimal concentration of 5 wt% Au@SiO2 aggregates shows the enhancement of 80% and 52% in external quantum efficiency and photocurrent density, respectively. The superior performance of the aggregates relative to NP is attributed to their larger scattering... 

    Manganese and cobalt-terephthalate metal-organic frameworks as a precursor for synthesis of Mn2O3, Mn3O4 and Co3O4 nanoparticles: Active catalysts for olefin heterogeneous oxidation

    , Article Inorganic Chemistry Communications ; Volume 61 , 2015 , Pages 73-76 ; 13877003 (ISSN) Ashouri, F ; Zare, M ; Bagherzade, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The thermal decomposition of manganese and cobalt-terephthalate Metal-Organic Framework precursors was utilized as a synthetic route for fabrication of Co3O4, Mn3O4 and Mn2O3 nanoparticles. The prepared metal oxide nanoparticles of Co3O4, Mn3O4 and Mn2O3 possess average size diameter of 40, 60 and 80 nm respectively. The findings demonstrate that spinel structure nanoparticles of Co3O4 and Mn3O4 exhibit efficient catalytic activity toward heterogeneous olefin epoxidation in the presence of tert-butyl hydroperoxide. In... 

    Immobilized manganese porphyrin on functionalized magnetic nanoparticles via axial ligation: Efficient and recyclable nanocatalyst for oxidation reactions

    , Article Journal of Coordination Chemistry ; Volume 68, Issue 13 , 2015 , Pages 2347-2360 ; 00958972 (ISSN) Bagherzadeh, M ; Mortazavi Manesh, A ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Magnetic nanoparticles (MNPs), Fe3O4@SiO2, have been prepared and functionalized by 3-(chloropropyl)trimethoxysilane and then by imidazole to synthesize Fe3O4@SiO2-Im. The functionalized Fe3O4 nanoparticles were used as a support to anchor manganese porphyrin via axial ligation. The prepared catalyst was characterized by elemental analysis, FT-IR spectroscopy, X-ray powder diffraction, UV-vis spectroscopy, and scanning electron microscopy. Application of immobilized manganese porphyrin as a heterogeneous catalyst in oxidation of alkenes and sulfides was explored. To find suitable reaction conditions,...