Loading...
Search for: nano-scale
0.008 seconds

    Laser induced surface processing with gold nanoparticle arrays embedded in a transparent matrix

    , Article Nano ; Volume 8, Issue 1 , January , 2013 ; 17932920 (ISSN) Askari, A. A ; Bahrampour, A. R ; Sharif University of Technology
    2013
    Abstract
    Gold nanoparticles are widely used as high efficient photon-thermal energy converters in a broad range of applications. This paper presents a theoretical investigation on using the optothermal properties of gold nanoparticle arrays to generate nanoscale molten and rubbery regions on the surface of an amorphous polymeric film. Nanoparticles are assumed to be embedded in a transparent silica layer and illuminated with a 7.5 ns pulsed laser at 532 nm. Simulation results are presented for systems with single gold nanoparticles, dimers and chains. Both electromagnetic and thermal interaction between nanoparticles are found to be important factors in determining the result of surface processing.... 

    Eye diagram parameter extraction of nano scale VLSI interconnects

    , Article 2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems, EPEPS 2012 ; 2012 , Pages 327-330 ; 9781467325394 (ISBN) Mehri, M ; Sarvari, R ; Seydolhosseini, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, jitter due to both capacitive and inductive coupling is studied. Maximum frequency of driving signal on a wire is limited by its input rise time, fall time, pulse width, and the coupling effect from its neighbors. The analytical expressions to estimate the deterministic jitter time due to these effects are presented. The estimation is based on the fastest and slowest approximation of the signal waveform components. Also, we have extracted the eye opening parameters of the eye diagram. The inductance effects significance is shown on eye opening and jitter time. The 45nm technology is used for estimating the horizontal and vertical eye opening and jitter time. The presented... 

    The effects of nano Mgo on physical and mechanical properties of Al 2O3-SiC composites

    , Article Journal of Ceramic Science and Technology ; Volume 3, Issue 1 , 2012 , Pages 29-34 ; 21909385 (ISSN) Nemati, A ; Surani, F ; Abdizadeh, H ; Baharvandi, H. R ; Sharif University of Technology
    2012
    Abstract
    In this research, the effects of nano-sized MgO in Al2O 3-SiC composites were investigated. The overall changes in the density and mechanical properties of sintered samples (hardness, bending strength and toughness) were evaluated. After mixing, drying and uniaxial compaction of the powders, they were first heat-treated at low temperature in an electric furnace to remove any residuals. They were then heat-treated at high temperature (1700 °C) inside a graphite furnace in argon atmosphere for sintering (at normal and high pressure). The content of MgO in the Al 2O3-10 vol% SiC composite was 0, 500, 1000, and 1500 ppm. Thefracture toughness(KIC)of sintered composite with 10... 

    Nanotechnology-assisted EOR techniques: New solutions to old challenges

    , Article Society of Petroleum Engineers - SPE International Oilfield Nanotechnology Conference 2012 ; 2012 , Pages 382-396 ; 9781622761104 (ISBN) Ayatollahi, S ; Zerafat, M. M ; Sharif University of Technology
    SPE  2012
    Abstract
    Enhanced Oil Recovery techniques are gaining more attention worldwide as the proved oil reserves are declining and the oil price is hiking. Although many giant oil reservoirs in the world were already screened for EOR processes, the main challenges such as low sweep efficiency, costly techniques, possible formation damages, transportation of huge amounts of EOR agents to the fields especially for offshore cases, analyzing micro-scale multi-phase flow in the rock to the large scale tests and the lack of analyzing tools in traditional experimental works, hinder the proposed EOR processes. Our past experiences on using nanotechnology to the upstream cases, especially EOR processes, revealed... 

    Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects

    , Article International Journal of Solids and Structures ; Volume 49, Issue 5 , March , 2012 , Pages 759-770 ; 00207683 (ISSN) Shodja, H. M ; Ahmadzadeh Bakhshayesh, H ; Gutkin, M. Y
    2012
    Abstract
    The elastic behavior of an edge dislocation, which is positioned outside of a nanoscale elliptical inhomogeneity, is studied within the interface elasticity approach incorporating the elastic moduli and surface tension of the interface. The complex potential function method is used. The dislocation stress field and the image force acting on the dislocation are found and analyzed in detail. The difference between the solutions obtained within the classical-elasticity and interface-elasticity approaches is discussed. It is shown that for the stress field, this difference can be significant in those points of the inhomogeneity-matrix interface, where the radius of curvature is smaller and which... 

    Surface/interface effect on the scattered fields of an anti-plane shear wave in an infinite medium by a concentric multi-coated nanofiber/nanotube

    , Article European Journal of Mechanics, A/Solids ; Volume 32 , 2012 , Pages 21-31 ; 09977538 (ISSN) Shodja, H. M ; Pahlevani, L ; Sharif University of Technology
    Abstract
    In this paper, the scattering of anti-plane shear waves in an infinite matrix containing a multi-coated nanofiber/nanotube is studied. Based on the fact that the surface to volume ratio for nano-size objects increases, the usual classical theories which generally neglect the surface/interface effects fail to provide reasonable results. Therefore, to analyze the problem the wave-function expansion method is coupled with the surface/interface elasticity theory. In order to provide some quantitative results through consideration of several examples, the knowledge of the relevant surface and/or interface properties of the corresponding constituent materials are required. For this reason, part of... 

    Application of nonlocal theory in dynamic pull-in analysis of electrostatically actuated micro and nano beams

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011, Washington, DC ; Volume 7 , 2011 , Pages 255-261 ; 9780791854846 (ISBN) Ahmadian, M. T ; Pasharavesh, A ; Fallah, A ; Sharif University of Technology
    2011
    Abstract
    One of the most important phenomena related to electrically actuated micro and nano electromechanical systems (MEMSNEMS) is dynamic pull-in instability which occurs when the electrical attraction and beam inertia forces are more than elastic restoring force of the beam. According to failure of classical mechanics constitutive equations in prediction of dynamic behavior of small size systems, nonlocal theory is implemented here to analyze the dynamic pull-in behavior. Equation of motion of an electrostatically actuated micro to nano scale doubly clamped beam is rewritten using differential form of nonlocal theory constitutive equation. To analyze the nonlocal effect equation of motion is... 

    Molecular dynamics investigation of β-SiC behavior under three-axial tensile loading

    , Article Journal of Computational and Theoretical Nanoscience ; Volume 8, Issue 11 , 2011 , Pages 2187-2192 ; 15461955 (ISSN) Mortazavi, B ; Simchi, A ; Besharati Givi, M. K ; Rajabpour, A ; Sharif University of Technology
    2011
    Abstract
    Molecular dynamics (MD) simulations were used to study the mechanical behaviour of β-SiC at nano-scale under tensile loading. Effects of loading rate and tensile temperature on the mechanical properties and failure were studied. Modified embedded-atom method (MEAM) potential and Berendsen thermostat were utilized for modelling. Periodic boundary conditions were employed and the behaviour of material was analyzed under three-axial loading condition at which the stress- strain relation was acceptably size independent. It is shown that with increasing the loading rate from 5 m/s to 70 m/s, the failure strain increases without a remarkable change in the stress-strain relationship. The MD... 

    A low complexity scheme for entanglement distributor buses

    , Article Quantum Information Processing ; Volume 10, Issue 4 , 2011 , Pages 519-532 ; 15700755 (ISSN) Ghojavand, M ; Sharif University of Technology
    Abstract
    For technological purposes and theoretical curiosity, it is very interesting to have a building block that produces a considerable amount of entanglement between on-demand sites through a simple control of a few sites. Here, we consider permanently- coupled spin networks and study entanglement generation between qubit pairs to find low-complexity structures capable of generating considerable entanglement between various qubit pairs.We find that in axially symmetric networks the generated entanglement between some qubit pairs is rather larger than generic networks. We show that in uniformly-coupled spin rings each pair can be considerably entangled through controlling suitable vertices. To... 

    The annealing phenomena and thermal stability of severely deformed steel sheet

    , Article Materials Science and Engineering A ; Volume 528, Issue 15 , June , 2011 , Pages 5212-5218 ; 09215093 (ISSN) Khodabakhshi, F ; Kazeminezhad, M ; Sharif University of Technology
    2011
    Abstract
    However, there are many works on annealing process of SPDed non-ferrous metals, there are limit works on annealing process of SPDed low carbon steel. Therefore, in this study the annealing responses after constrained groove pressing (CGP) of low carbon steel sheets have been investigated. The sheets are subjected to severe plastic deformation at room temperature by CGP method up to three passes. Nano-structured low carbon steel sheets produced by severe plastic deformation are annealed at temperature range of 100-600 °C for 20. min. The changes of their microstructures after deformation and annealing are studied by optical microscopy. The effects of large strain and annealing temperature on... 

    Production of granulated-copper oxide nanoparticles for catalytic application

    , Article Journal of Materials Research ; Volume 25, Issue 10 , 2010 , Pages 2025-2034 ; 08842914 (ISSN) Hosseinpour, M ; Ahmadi, S. J ; Mousavand, T ; Outokesh, M ; Sharif University of Technology
    2010
    Abstract
    Ultra fine CuO nanoparticles In the range of 2 ± 0.2 nm were synthesized by the supercritical hiydrotliermal method in a batch reactor. Itwas demonstrated that elevating the pH of the Cu2+ precursor solution to around 6 (neutral condition) not only does not lead to excessive agglomeration of the particles, but also reduces particle size and in general promotes their nanoscale characteristics. Prepared nanoparticles were immobilized in the biopolymcric matrix of barium alginate and calcined at different temperatures resulting in micro spherical granules of high porosity and elevated mechanical strength. The fabricated samples were characterized using x-ray diffractometry (XRD), transmission... 

    Milling media effects on synthesis, morphology and structural characteristics of single crystal hydroxyapatite nanoparticles

    , Article Advances in Applied Ceramics ; Volume 109, Issue 2 , 2010 , Pages 117-122 ; 17436753 (ISSN) Honarmandi, P ; Honarmandi, P ; Shokuhfar, A ; Nasiri Tabrizi, B ; Ebrahimi Kahrizsangi, R ; Sharif University of Technology
    2010
    Abstract
    This paper presents a dry mechanochemical process to produce hydroxyapatite (HAp) nanoparticles. Two distinct chemical reactions are introduced to prepare HAp powders using milling process. Structural and morphological properties of the obtained materials are studied by X-ray diffraction and transmission electron microscopy. The results reveal that the single crystal HAp nanoparticles have been successfully produced in metallic and polymeric vials through two different experimental procedures. Tempered chrome steel and polyamide-6 materials are adopted as the metallic and polymeric vials respectively. Nanoellipse, nanorod and nanosphere powders are obtained in these experimental procedures.... 

    Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 12, Issue PART A , 2010 , Pages 205-214 ; 9780791843857 (ISBN) Babahosseini, H ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the... 

    Dynamics modeling of nanoparticle in AFM-based manipulation using two nanoscale friction models

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 225-234 ; 9780791843857 (ISBN) Babahosseini, H ; Mahboobi, S. H ; Meghdari, A ; Sharif University of Technology
    Abstract
    Application of atomic force microscope (AFM) as a manipulator for pushing-based positioning of nanoparticles has been of considerable interest during recent years. Nevertheless comprehensive researches has been done on modeling and the dynamics analysis of nanoparticle behavior during the positioning process. The development of dynamics modeling of nanoparticle is crucial to have an accurate manipulation. In this paper, a comprehensive model of pushing based manipulation of a nanoparticle by AFM probe is presented. The proposed nanomanipulation model consists of all effective phenomena in nanoscale. Nanoscale interaction forces, elastic deformation in contact areas and friction forces in... 

    Physical aspects of rarefied gas flow in micro to nano scale geometries using DSMC

    , Article 39th AIAA Fluid Dynamics Conference, 22 June 2009 through 25 June 2009, San Antonio, TX ; 2009 ; 9781563479755 (ISBN) Roohi, E ; Darbandi, M ; Mirjalili, V ; Schneider, G. E ; Sharif University of Technology
    Abstract
    Rarefied gas flow in micro/nano electro mechanical systems (MEMS/NEMS) does not perform exactly as that in macro-scale devices. The main goal in this study is to investigate mixed subsonic-supersonic flows in micro/nano channels and nozzles and to provide physical descriptions on their behaviors. We use DSMC method as a reliable numerical tool to extend our simulation. It is because the DSMC provides accurate solution for the Boltzmann equations over the entire range of rarefied flow regime or Knudsen numbers. As is known, the appearance of oblique/normal shocks at the inlet of a channel or a nozzle adds to the complexity of internal flow field analyses. We found some very unique physical... 

    A 3D continuum-kinetic monte carlo simulation study of early stages of nucleation and growth in ni electrodeposition

    , Article Electrochimica Acta ; Volume 236 , 2017 , Pages 1-9 ; 00134686 (ISSN) Zargarnezhad, H ; Dolati, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A 3D continuum code coupled with a kinetic Monte Carlo module has been developed for the simulation of Ni electrocrystallization in the initial stages of nucleation and growth. Mass transfer in solution was controlled by a finite-difference code which is distributed over an irregular nanoscale grid system in vertical direction to the substrate. Deposition events such as surface diffusion, chemisorption and crystallization in the system were considered in a KMC module that processes the output of a diffusion-controlled scheme in probability functions to model electrodeposition process on surface. Electrochemical data of this simulation was simultaneously generated according to analytical... 

    SEMON: sensorless event monitoring in self-powered wireless nanosensor networks

    , Article ACM Transactions on Sensor Networks ; Volume 13, Issue 2 , 2017 ; 15504859 (ISSN) Zarepour, E ; Hassan, M ; Chou, C. T ; Adesina, A. A ; Sharif University of Technology
    Association for Computing Machinery  2017
    Abstract
    A conventional wireless sensor network node consists of a number of components: microprocessor, memory, sensor, and radio. Advances in nanotechnology have enabled the miniaturization of these components, thus enabling wireless nanoscale sensor networks (WNSN). Due to their small size, WNSN nodes are expected to be powered by harvesting energy from the environment. Unfortunately, there is a mismatch in the energy that can be harvested and the energy required to power all the aforementioned components in a WNSN node. In this article, we propose a simplified sensor node architecture for event detection. We call our architecture Sensorless Event MONitoring in self-powered WNSNs (SEMON). A SEMON... 

    Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites

    , Article International Journal of Solids and Structures ; Volume 46, Issue 16 , 2009 , Pages 2978-2987 ; 00207683 (ISSN) Haftbaradaran, H ; Mohammadi Shodja, H ; Sharif University of Technology
    2009
    Abstract
    It is well-known that classical continuum theory has certain deficiencies in predicting material's behavior at the micro- and nanoscales, where the size effect is not negligible. Higher order continuum theories introduce new material constants into the formulation, making the interpretation of the size effect possible. One famous version of these theories is the couple stress theory, invoked to study the anti-plane problems of the elliptic inhomogeneities and inclusions in the present work. The formulation in elliptic coordinates leads to an exact series solution involving Mathieu functions. Subsequently, the elastic fields of a single inhomogeneity in conjunction with the Mori-Tanaka theory... 

    Bio-based UV curable polyurethane acrylate: Morphology and shape memory behaviors

    , Article European Polymer Journal ; Volume 118 , 2019 , Pages 514-527 ; 00143057 (ISSN) Salkhi Khasraghi, S ; Shojaei, A ; Sundararaj, U ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Smart bio-based shape memory polymers with high performance and fast response have the exciting potential to meet the growing need in biomedical applications. In this study, novel fast response UV-curable shape memory polyurethane acrylates (SMPUAs) comprising polycaprolactone diols (PCL-Diol), hexamethylene diisocyanate (HDI) and hydroxy-methyl methacrylate (HEMA) were synthesized by two-step bulk polymerization. Two series of PUAs with almost the same amount of hard segment content (HSC) were prepared with varying soft-segment molecular weight (2000, 3000, and 4000 g/mol) and different molar ratios of constituents. A mono-functional reactive diluent was used to control HSC and reduce the... 

    Analysis of microchannel heat sink performance using nanofluids in turbulent and laminar flow regimes and its simulation using artificial neural network

    , Article 10th International Conference on Computer Modelling and Simulation, EUROSIM/UKSim2008, Cambridge, 1 April 2008 through 3 April 2008 ; 2008 , Pages 623-628 ; 0769531148 (ISBN); 9780769531144 (ISBN) Shokouhmand, H ; Ghazvini, M ; Shabanian, J ; Sharif University of Technology
    2008
    Abstract
    In this study, silicon microchannel heat sink (MCHS) performance using nanofluids as coolants was analyzed. The nanofluid was a mixture of nanoscale Cu particles and pure water with various volume fractions. Based on theoretical models and experimental correlations, the heat transfer and friction coefficients required in the analysis were used. In the theoretical model, nanofluid was treated as a single-phase fluid. In the experimental correlation, thermal dispersion due to particle random motion was included. The microchannel heat sink performances for a specific geometries with Wch = W fin = 100 μm and Lch =300 μm is examined. In this study, flow in laminar and turbulent regimes using the...