Loading...
Search for: molybdenum
0.007 seconds
Total 171 records

    Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles

    , Article Journal of Energy Storage ; Volume 34 , 2021 ; 2352152X (ISSN) Hosseinzadeh, K ; Montazer, E ; Shafii, M. B ; Ganji, A. R. D ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Latent thermal energy storage dependent on Phase Change Materials (PCMs) proposes a possible answer for modifying the availability of alternating energy from renewable sources such as wind and solar. They can possibly store large amounts of energy in moderately tiny dimensions as well as through almost isothermal procedures. Notwithstanding, low thermal conductivity values is a significant disadvantage of the present PCMs which critically restrict their energy storage usage. Likewise, this unacceptably decreases the solidification/melting rates, hence causing the system response time to be excessively lengthy. The present examination accomplished a better PCM solidification rate with a... 

    Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; 2021 ; 03603199 (ISSN) Shaker, T ; Mehdipour, H ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Active edge sites of MoS2 nanosheets exhibit promising futures for hydrogen evolution reaction (HER), comparable with remarkable performances of highly cost platinum. However, 3D structures of MoS2 suffer from a lack of high mobility and unexposed active sites which lower the electrocatalytic activity. In this study, we show that there is a balance between increasing the active sites on the one hand and managing the charge transfer to facilitate the reaction on the other hand, and achieving this balance increases the efficiency of the electrocatalyst tremendously. For this purpose, we directly attached exfoliated MoS2 nanosheets onto carbon cloth (CC) substrate as a 3D network of conductive... 

    Electrochemical properties of Ni3S2@MoS2-rGO ternary nanocomposite as a promising cathode for Ni–Zn batteries and catalyst towards hydrogen evolution reaction

    , Article Renewable Energy ; Volume 194 , 2022 , Pages 152-162 ; 09601481 (ISSN) Salarizadeh, P ; Rastgoo Deylami, M ; Askari, M. B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The development of active and stable materials has great importance for the commercialization of nickel-zinc (Ni–Zn) batteries and hydrogen production. Transition metal sulfides have good theoretical properties for these applications. In this research, we present the synthesis and characterization of Ni3S2@MoS2 nanocatalyst and its hybrid with reduced graphene oxide (Ni3S2@MoS2-rGO). The capability of these materials is investigated as cathode material for Ni–Zn batteries and hydrogen evolution in alkaline media. In the case of Ni–Zn batteries, the assembled Ni3S2@MoS2-rGO//Zn battery shows a discharge capacity of 249.3 mAh g−1 with coulombic efficiency of 97.2%, showing a higher... 

    Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 3 , 2022 , Pages 1579-1588 ; 03603199 (ISSN) Shaker, T ; Mehdipour, H ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Active edge sites of MoS2 nanosheets exhibit promising futures for hydrogen evolution reaction (HER), comparable with remarkable performances of highly cost platinum. However, 3D structures of MoS2 suffer from a lack of high mobility and unexposed active sites which lower the electrocatalytic activity. In this study, we show that there is a balance between increasing the active sites on the one hand and managing the charge transfer to facilitate the reaction on the other hand, and achieving this balance increases the efficiency of the electrocatalyst tremendously. For this purpose, we directly attached exfoliated MoS2 nanosheets onto carbon cloth (CC) substrate as a 3D network of conductive... 

    Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions

    , Article Biochemical Engineering Journal ; Volume 67 , 2012 , Pages 208-217 ; 1369703X (ISSN) Amiri, F ; Mousavi, S. M ; Yaghmaei, S ; Barati, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The kinetics of bioleaching of Mo, Ni, and Al from spent hydrocracking catalyst, using Aspergillus niger was studied. The four most effective bioleaching variables were selected in accordance with the Plackett-Burman design and were further optimized via central composite design (CCD). The optimal values of the variables for maximum multi-metal bioleaching were as follows: particle size 150-212. μm, sucrose 93.8. g/L, pulp density 3%. w/v, and pH 7. The maximum metal recoveries corresponding to these conditions were 99.5 ± 0.4% Mo, 45.8 ± 1.2% Ni, and 13.9 ± 0.1% Al. The relatively low Ni extraction was attributed to the precipitation of Ni in the presence of oxalic acid. Under the optimal... 

    Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum

    , Article Bioresource Technology ; Volume 102, Issue 2 , January , 2011 , Pages 1567-1573 ; 09608524 (ISSN) Amiri, F ; Yaghmaei, S ; Mousavi, S. M ; Sharif University of Technology
    2011
    Abstract
    Adaptation of Penicillium simplicissimum with different heavy metals present in a spent hydrocracking catalyst, as well as one-step, two-step, and spent medium bioleaching of the spent catalyst by the adapted fungus, was examined in batch cultures. Adaptation experiments with the single metal ions Ni, Mo, Fe, and W showed that the fungus could tolerate up to 1500. mg/L Ni, 8000. mg/L Mo, 3000. mg/L Fe, and 8000. mg/L W. In the presence of multi-metals, the fungus was able to tolerate up to 300. mg/L Ni, 200. mg/L Mo, 150. mg/L Fe and 2500. mg/L W. A total of 3% (w/v) spent catalyst generally gave the maximum extraction yields in the two-step bioleaching process (100% of W, 100% of Fe, 92.7%... 

    Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum

    , Article Separation and Purification Technology ; Volume 80, Issue 3 , August , 2011 , Pages 566-576 ; 13835866 (ISSN) Amiri, F ; Mousavi, S. M ; Yaghmaei, S ; Sharif University of Technology
    2011
    Abstract
    Statistically based experimental designs were applied to screen and optimize the bioleaching of spent hydrocracking catalyst by Penicillium simplicissimum. Eleven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design. Four significant variables (pulp density, sucrose, NaNO3, and yeast extract concentrations) were selected for the optimization studies. The combined effect of these variables on metal bioleaching was studied using a central composite design (CCD). Second-order polynomials were established to identify the relationship between the recovery percent of the metals and the four significant variables. The optimal values of the variables... 

    Effect of exfoliated molybdenum disulfide oxide on friction and wear properties of ultra high molecular weight polyethylene

    , Article Polymers for Advanced Technologies ; Volume 29, Issue 12 , 2018 , Pages 3085-3096 ; 10427147 (ISSN) Amini, M ; Ramazani S. A., A ; Afkhami Varjouy, A ; Faghihi, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    The aim of this work is to investigate the effect of molybdenum disulfide on tribological properties of Ultra-high-molecular-weight polyethylene (UHMWPE). UHMWPE/MoS2 nano-composites were prepared using in-situ polymerization and Ziegler-Natta catalytic system. Studies showed that, in order to obtain the optimum tribological properties, interlayer distance between nanosheets should be as high as possible. Therefore, the nanosheets were subjected to oxidation using the required oxidants followed by thermal shock and ultrasound. Fourier-transform infrared spectroscopy (FTIR) analysis was used to determine the formation of functional groups which indicate the formation of S═O bond in the... 

    Investigating the different conditions on solution processed MoOx thin film in long lifetime fluorescent polymer light emitting diodes

    , Article Materials Chemistry and Physics ; Volume 204 , 2018 , Pages 262-268 ; 02540584 (ISSN) Alehdaghi, H ; Marandi, M ; Irajizad, A ; Taghavinia, N ; Jang, J ; Zare, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Transition metal oxides are being more frequently used as hole injection layer (HIL) in organic light emitting diodes (OLEDs), in place of polymer HILs such as PEDOT:PSS. The very thin films of the metal oxide HILs are usually deposited using vapor deposition, in order to create uniform films. Here, we report OLEDs fabricated using solution processed MoOx films as the HIL and super yellow as the emissive layer. The performance of the devices is comparable to PEDOT:PSS based devices, while the stability tests show the lifetime of MoOx-based devices is 4 × 106 h, about 40 times longer than PEDOT:PSS devices, at typical working condition. X-ray photoelectron spectroscopy (XPS) indicates both... 

    Sensing behavior of flower-shaped MoS2 nanoflakes: Case study with methanol and xylene

    , Article Beilstein Journal of Nanotechnology ; Volume 9, Issue 1 , 2018 , Pages 608-615 ; 21904286 (ISSN) Barzegar, M ; Berahman, M ; Iraji zad, A ; Sharif University of Technology
    Beilstein-Institut Zur Forderung der Chemischen Wissenschaften  2018
    Abstract
    Recent research interest in two-dimensional (2D) materials has led to an emerging new group of materials known as transition metal dichalcogenides (TMDs), which have significant electrical, optical, and transport properties. MoS2 is one of the well-known 2D materials in this group, which is a semiconductor with controllable band gap based on its structure. The hydrothermal process is known as one of the scalable methods to synthesize MoS2 nanostructures. In this study, the gas sensing properties of flower-shaped MoS2 nanoflakes, which were prepared from molybdenum trioxide (MoO3) by a facile hydrothermal method, have been studied. Material characterization was performed using X-ray... 

    Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances

    , Article Journal of Colloid and Interface Science ; Volume 542 , 2019 , Pages 325-338 ; 00219797 (ISSN) Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    Wire-shaped micro-supercapacitors attracted extensive attentions in next-generation portable and wearable electronics, due to advantages of miniature size, lightweight and flexibility. Herein, NiMoO 4 nanorods supported on Ni film coated Cu wire are successfully fabricated thorough direct deposition of Ni film onto Cu wire as the conductive substrate, followed by growth of the NiMoO 4 nanorods on Ni film coated Cu wire substrate by means a hydrothermal annealing process. The prepared 3D, porous electrode demonstrates extremely high areal specific capacitance of 12.03F cm −2 at the current density of 4 mA cm −2 and retained capacitance of 8.23 F cm −2 at a much higher current density of 80...