Loading...
Search for: metal-nanoparticle
0.011 seconds
Total 213 records

    Multiway investigation of interaction between fluorescence labeled DNA strands and unmodified gold nanoparticles

    , Article Analytical Chemistry ; Volume 84, Issue 15 , July , 2012 , Pages 6603-6610 ; 00032700 (ISSN) Akhlaghi, Y ; Kompany Zareh, M ; Hormozi Nezhad, M. R ; Sharif University of Technology
    ACS  2012
    Abstract
    The single stranded DNA can be adsorbed on the negatively charged surface of gold nanoparticles (AuNPs), but the rigid structure of double stranded DNA prevents it from adsorption. Signal of a tagged single stranded DNA will be quenched by the plasmon effect of the AuNP surface after its adsorption. This phenomenon has been used to study the DNA hybridization and interactions of two complementary 21mer oligonucleotides each tagged with a different fluorescent dye in the presence of 13 nm gold nanoparticles. The DNA strands used in this study belong to the genome of HIV. The obtained rank deficient three-way fluorescence data sets were resolved by both PARAFAC and restricted Tucker3 models.... 

    Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    , Article Materials Science and Engineering A ; Volume 648 , 2015 , Pages 47-50 ; 09215093 (ISSN) Fattahi, M ; Noei Aghaei, V ; Dabiri, A. R ; Amirkhanlou, S ; Akhavan, S ; Fattahi, Y ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was... 

    Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 1098-1104 ; 09284931 (ISSN) Asadian, E ; Iraji Zad, A ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable... 

    Shed light on submerged DC arc discharge synthesis of low band gap gray Zn/ZnO nanoparticles: Formation and gradual oxidation mechanism

    , Article Advanced Powder Technology ; Volume 29, Issue 5 , 2018 , Pages 1246-1254 ; 09218831 (ISSN) Ziashahabi, A ; Poursalehi, R ; Naseri, N ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Synthesis of colloidal metal oxides with controllable size and morphology is burgeoning field of research in nanoscience. Low band gap gray Zn/ZnO colloidal nanoparticles were fabricated by plasma-liquid interaction of DC arc discharge in water. Scanning electron microscopy, X-ray diffraction and UV–vis spectroscopy were employed for morphology, crystal structure and optical characterizations respectively. Optical emission spectroscopy was used to investigate the plasma properties during the synthesis and formation mechanism of nanoparticles. Nanoparticles with different size and shape were fabricated only by adjusting discharge current during synthesis without introducing any chemical... 

    ThThnated Development of a pH assisted AgNP-based colorimetric sensor Array for simultaneous identification of phosalone and azinphosmethyl pesticides

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 219 , 2019 , Pages 496-503 ; 13861425 (ISSN) Orouji, A ; Abbasi Moayed, S ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Development of simple and rapid methods for identification of pesticides, due to their broad usage and harmful effects on mammals, has been known as a critical demand. Herein, we have introduced a silver nanoparticle (AgNP)based colorimetric sensor array for simultaneous identification of Azinphosmethyl (AM)and Phosalone (PS)pesticides. In the presence of the target pesticides, unmodified AgNPs at various pHs (4.5, 5.5 and 9.5)showed different aggregation behaviors. As a result of aggregation, the color and UV–Vis spectra of AgNPs changed differentially, leading to distinct response patterns for AM and PS. The aggregation induced spectral changes of AgNPs, were used to identify AM and PS... 

    Selective colorimetric detection of pentaerythritol tetranitrate (PETN) using arginine-mediated aggregation of gold nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 228 , 2020 Taefi, Z ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Detection of pentaerythritol tetranitrate (PETN) as an explosive has been of great interest because of public safety and military concerns. Here, we have presented a simple, selective and sensitive colorimetric method for direct detection of PETN. The gold nanoparticles (AuNPs) were first exposed to arginine which has primary amines in its structure. Electron deficient –NH2 groups from arginine could strongly interact with –NO2 groups of PETN as electron donors. Hydrogen bonding happens between the –NO2 group of PETN and –NH2 group of arginine molecules. Therefore, selective aggregation of AuNPs happened because of the donor-acceptor and hydrogen bonding interactions. Due to the aggregation,... 

    Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 71, Issue 1 , 2008 , Pages 199-203 ; 13861425 (ISSN) Hormozi Nezhad, M. R ; Alimohammadi, M ; Tashkhourian, J ; Razavian, S. M ; Sharif University of Technology
    2008
    Abstract
    An indirect colorimetric method is presented for detection of trace amounts of hydroquinone (1), catechol (2) and pyrogallol (3). The reduction of AuCl4- to Gold nanoparticles (Au-NPs) by these phenolic compounds in the presence of cetyltrimethylammonium chloride (CTAC) produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of Au-NPs allows the quantitative colorimetric detection of the phenolic compounds. The calibration curves derived from the changes in absorbance at λ = 568 nm were linear with concentration of hydroquinone, catechol and pyrogallol in the range of 7.0 × 10-7 to 1.0 × 10-4M, 6.0 × 10-6 to 2.0 × 10-4 M and 6.0 × 10-7 to 1.0 × 10-4 M,... 

    Facile and ultra-sensitive voltammetric electrodetection of Hg2+in aqueous media using electrodeposited AuPtNPs/ITO

    , Article Analytical Methods ; Volume 13, Issue 24 , 2021 , Pages 2688-2700 ; 17599660 (ISSN) Bagheri Hariri, M ; Siavash Moakhar, R ; Sharifi Abdar, P ; Zargarnezhad, H ; Shone, M ; Rahmani, A. R ; Moradi, N ; Niksefat, V ; Shayar Bahadori, K ; Dolati, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    In this study, we have investigated the use of electrodeposited Au-Pt nanoparticles (AuPtNPs) on indium tin oxide (ITO) for the detection of Hg2+ heavy ions in water samples. The mechanism of AuPtNP electrocrystallization on ITO glass in an aqueous solution containing 0.5 mM HAuCl4 + 0.5 mM H2PtCl6 is described for the first time. The nucleation mechanism of monometallic AuNPs on ITO was found to be progressive; however, a transition from progressive to instantaneous was observed for bimetallic AuPtNPs at elevated overpotentials. The modified ITOs were then assessed for the electrodetection of Hg2+ in aqueous media. It was shown by differential pulse voltammetry (DPV) that the sensitivity of... 

    Simple SPR-based colorimetric sensor to differentiate Mg2+ and Ca2+ in aqueous solutions

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 268 , 2022 ; 13861425 (ISSN) Amirjani, A ; Salehi, K ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    L-tryptophan functionalized AgNPs were successfully fabricated using a one-pot synthesis method and assessed as a colorimetric probe for rapid and accurate determination of Mg2+ ions. The developed sensor showed a selective response towards Mg2+ with no interference from Ca2+ in the wide concentration range of 1–200 µM. The sensor's response was optimized in the pH range of 9–10, which can be attributed to the protonation of amine groups and their interaction with Mg2+ ions. The stability and selectivity of the sensor were examined in different salt (NaCl) and other metal ions, respectively. The L-tryptophan-AgNPs sensor detected Mg2+ with the limit of detection of 3 µM, which is way lower... 

    Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 153 , 2016 , Pages 709-713 ; 13861425 (ISSN) Khodaveisi, J ; Haji Shabani, A. M ; Dadfarnia, S ; Rohani Moghadam, M. R ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier 
    Abstract
    A highly sensitive and simple indirect spectrophotometric method has been developed for the determination of trace amounts of inorganic mercury (Hg2 +) in aqueous media. The method is based on the inhibitory effect of Hg2 + on the activity of horseradish peroxidase (HRP) in the oxidation of ascorbic acid by hydrogen peroxide followed by the reduction of Au3 + to Au-NPs by unreacted ascorbic acid and the measurement of the absorbance of localized surface plasmon resonance (LSPR) peak of gold nanoparticles (at 530 nm) which is directly proportional to the concentration of Hg2 +. Under the optimum conditions, the calibration curve was linear in the concentration range of 1-220 ng mL- 1. Limits... 

    A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles

    , Article Talanta ; Vol. 129, issue , 2014 , pp. 227-232 ; ISSN: 00399140 Hormozi-Nezhad, M. R ; Abbasi-Moayed, S ; Sharif University of Technology
    Abstract
    A highly sensitive and selective colorimetric method for detection of copper ions, based on anti-aggregation of D-penicillamine (D-PC) induced aggregated gold nanoparticles (AuNPs) was developed. Copper ions can hinder the aggregation of AuNPs induced by D-PC, through formation of mixed-valence complex with D-PC that is a selective copper chelator. In the presence of a fixed amount of D-PC, the aggregation of AuNPs decreases with increasing concentrations of Cu2+ along with a color change from blue to red in AuNPs solution and an increase in the absorption ratio (A520/A 650). Under the optimum experimental conditions (pH 7, [AuNPs] =3.0 nmol L-1 and [NaCl]=25 mmol L-1), a linear calibration... 

    A second-order advantage achieved with the aid of gold nanoparticle catalytic activity. Determination of nitrophenol isomers in binary mixtures

    , Article Analytical Methods ; Vol. 6, issue. 9 , Feb , 2014 , pp. 3056-3064 ; ISSN: 17599660 Rabbani, F ; Abdollahi, H ; Hormozi-Nezhad, M. R ; Sharif University of Technology
    Abstract
    A novel, simple and rapid spectrophotometric method for the determination of nitrophenol (NP) isomer mixtures based on the catalytic activity of gold nanoparticles is described. Gold nanoparticle (∼13 nm) solution was used to catalyze the reduction of NP isomers to aminophenols with an excess amount of NaBH4. The second-order data were obtained by spectrophotometrically monitoring the reduction process of NP isomers. So, multivariate curve resolution optimized by alternative least squares (MCR-ALS) was used to analyze such data. MCR-ALS, an appropriate second-order method, can exploit the so-called 'second order advantage' (the ability to determine in the presence of uncalibrated... 

    Supported iron oxide nanoparticles: Recoverable and efficient catalyst for oxidative S-S coupling of thiols to disulfides

    , Article Catalysis Communications ; Volume 40 , 2013 , Pages 13-17 ; 15667367 (ISSN) Rajabi, F ; Kakeshpour, T ; Saidi, M. R ; Sharif University of Technology
    2013
    Abstract
    Supported iron oxide nanoparticles are found to be efficient and recoverable catalyst in the selective oxidation of thiols to their corresponding disulfides using hydrogen peroxide as green oxidant at room temperature. The protocol features an easy work-up, simplicity and the utilizing mild reaction conditions, as well as high selectivity toward disulfides, are highly advantageous compared to alternative reported methodologies. The supported iron oxide nanoparticles could be easily recovered and reused several times without any loss of activity. ICP-MS results prove that there is no metal leaching observed, and demonstrating the stability of the catalyst under the reaction conditions  

    Comparison of different strategies for the assembly of gold colloids onto Fe3O4@SiO2 nanocomposite particles

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 49 , 2013 , Pages 30-38 ; 13869477 (ISSN) Mohammad Beigi, H ; Yaghmaei, S ; Roostaazad, R ; Arpanaei, A ; Sharif University of Technology
    2013
    Abstract
    Three strategies were employed for the assembly of gold nanoparticles on silica-coated magnetite particles (SCMPs). In strategy I, citrate-coated gold nanoparticles were attached on the surface of amine-SCMPs. In strategy II, amine-SCMPs were coated with carboxylated gold nanoparticles via amide bond formation. In strategy III, the thiol-SCMPs surface was coated with gold nanoparticles. Among the above examined strategies, coating amine-SCMPs with gold nanoparticles via strategy I resulted in a better coverage and stronger intensity of absorption bands. Furthermore, results obtained through strategy I showed that decreasing the pH of the solution from 7 to 3 leads to a further red-shift of... 

    Highly sensitive turn-on fluorescent detection of captopril based on energy transfer between fluorescein isothiocyanate and gold nanoparticles

    , Article Journal of Luminescence ; Volume 134 , 2013 , Pages 874-879 ; 00222313 (ISSN) Hormozi Nezhad, M. R ; Bagheri, H ; Bohloul, A ; Taheri, N ; Robatjazi, H ; Sharif University of Technology
    2013
    Abstract
    A novel approach for highly sensitive detection of captopril was developed based on the fluorescence resonance energy transfer (FRET) between gold nanoparticles (Au NPs) and fluorescein isothiocyanate (FITC), in which FITC acts as the donor and Au NPs as the acceptor. The fluorescence intensity of fluorescein isothiocyanate (FITC) was strictly quenched as a result of noncovalently adsorbed on Au NPs. Upon the addition of captopril, the fluorescence intensity of FITC turn-on due to the competition between captopril and FITC towards the surface of Au NPs. Under the optimum conditions, the fluorescence intensity of the released FITC displays a linear relationship in the range of 20 μg L-1 to... 

    Melting enthalpy and entropy of freestanding metallic nanoparticles based on cohesive energy and average coordination number

    , Article Journal of Physical Chemistry C ; Volume 115, Issue 35 , August , 2011 , Pages 17310-17313 ; 19327447 (ISSN) Omid, H ; Delavari H., H ; Madaah Hosseini, H. R ; Sharif University of Technology
    2011
    Abstract
    An analytical model is proposed to study the effect of particle size on melting enthalpy and entropy of metallic nanoparticles (NPs). The Mott's and Regel's equations for melting entropy in the combination of core average coordination number (CAC) and surface average coordination number (SAC) of freestanding NPs are considered. Clusters of icosahedral (IC), body centered cubic (BCC), and body centered tetragonal (BCT) structure without any vacancies and defects are modeled. Using the variable coordination number made this model to be in good agreement with experimental and molecular dynamic (MD) results of different crystal structures. The model predicts melting entropy and enthalpy of... 

    All optical switch based on Fano resonance in metal nanocomposite photonic crystals

    , Article Optics Communications ; Volume 284, Issue 8 , 2011 , Pages 2230-2235 ; 00304018 (ISSN) Asadi, R ; Malek Mohammad, M ; Khorasani, S ; Sharif University of Technology
    Abstract
    We investigate the potential of plasmonic resonance in metal nanocomposite materials for the design of photonic crystal all optical switches by numerical methods. We study the absorption effect of the plasmonic resonance on the Fano resonances of one dimensional photonic crystal slabs covered by a metal nanocomposite layer. It is shown that the absorption reduces the contrast of the Fano resonances. However, for adequate metal nanoparticle concentrations it is possible to achieve both sufficiently sharp Fano resonance and strong Kerr nonlinearity, which provides a suitable condition for the design of high contrast and low threshold switches  

    A novel screen-printed TiO2 photoelectrochemical sensor for direct determination and reduction of hexavalent chromium

    , Article Electrochemistry Communications ; Volume 61 , 2015 , Pages 110-113 ; 13882481 (ISSN) Siavash Moakhar, R ; Goh, G. K. L ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    A novel and simple photoelectrochemical (PEC) sensor to detect Cr(VI) based on screen-printed TiO2 modified with gold nanoparticles is presented. The proposed PEC sensor showed a very low detection limit (S/N = 3) of 0.004 μM, over a wide linear concentration range from 0.01 μM to 100 μM with a high sensitivity of 11.88 μA.μM-1 Cr(VI). Results also indicated good anti-interference and superb recovery in natural media application for Cr(VI) sensing  

    One-pot synthesis of ZnO nanoparticles and submicron-aggregates for dye-sensitized solar cells

    , Article Materials Letters ; Volume 139 , January , 2015 , Pages 433-436 ; 0167577X (ISSN) Rostami, P ; Nemati, A ; Malekshahi Byranvand, M ; Mohammadpour, R ; Faridi, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    ZnO nanoparticles (NPs) and submicron aggregates (SMAs) were synthesized via a simple precipitation method by changing the amount of zinc acetate di-hydrate in absolute ethanol and synthesis time. Synthesized NPs and SMAs were characterized by FE-SEM, EDS, XRD, PL, and DRS and were used to fabricate dye-sensitized solar cells (DSSCs). The SMAs synthesized at moderate concentration (0.022 M) and with poly-dispersed distribution of the aggregates showed lower density of deep localized trap states as well as enhanced scattering features in comparison to NP-based electrode. As a result, power conversion efficiency (η) of about 2.56% with improved current density (Jsc) of 8.51 mA/cm2 were... 

    Numerical study of material properties, residual stress and crack development in sintered silver nano-layers on silicon substrate

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 1037-1047 ; 10263098 (ISSN) Keikhaie, M ; Movahhedy, M. R ; Akbari, J ; Alemohammad, H ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    In order to improve the performance of thin film devices, it is necessary to characterize their mechanical, as well as electrical, properties. In this work, a model is developed for analysis of the mechanical and electrical properties and the prediction of residual stresses in thin films of silver nanoparticles deposited on silicon substrates. The model is based on inter-particle diffusion modeling and finite element analysis. Through simulation of the sintering process, it is shown how the geometry, density, and electrical resistance of the thin film layers are changed by sintering conditions. The model is also used to approximate the values of Young's modulus and the generated residual...