Loading...
Search for: kinematics
0.005 seconds
Total 346 records

    Singularity analysis of parallel manipulators using constraint plane method

    , Article Mechanism and Machine Theory ; Volume 46, Issue 1 , 2011 , Pages 33-43 ; 0094114X (ISSN) Pendar, H ; Mahnama, M ; Zohoor, H ; Sharif University of Technology
    Abstract
    One of the most challenging problems in dealing with parallel manipulators is identifying their forward singular configurations. In such configurations these mechanisms become uncontrollable and cannot tolerate any external force. In this article a geometrical method, namely Constraint Plane Method (CPM), is introduced with the use of which one can easily obtain the singular configurations in many parallel manipulators. CPM is a methodical technique based on the famous Ceva plane geometry theorem. It is interesting to note that CPM involves no calculations and yields te result quickly. In addition, some of the previous geometrical methods led to many separate singular configurations;... 

    Inverse and forward dynamics of N-3RPS manipulator with lockable joints

    , Article Robotica ; June , 2015 , pp. 1383-1402 ; 02635747 (ISSN) Taherifar, A ; Salarieh, H ; Alasty, A ; Honarvar, M ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    The N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on... 

    Structural synthesis of 5 DoFs 3T2R parallel manipulators with prismatic actuators on the base

    , Article Robotics and Autonomous Systems ; Volume 58, Issue 3 , 2010 , Pages 307-321 ; 09218890 (ISSN) Motevalli, B ; Zohoor, H ; Sohrabpour, S ; Sharif University of Technology
    2010
    Abstract
    A method is presented to synthesize 5 degrees of freedom (DoFs) of 3 translational and 2 rotational (3T2R) parallel kinematic structures. This method is based on the theory of linear transformation and geometrical analysis. Central to this method is a set of novel 5 DoFs 3T2R parallel mechanisms (PMs). Based on the legs configuration, the generated mechanisms are classified. Moreover, the promising mechanisms of each class are introduced with respect to some criteria, i.e.: (a) degree of coupling between the actuators and degrees of freedom; (b) easy kinematics and control command; (c) easy construction (or low cost construction); and, (d) manufacturability. With reference to these criteria,... 

    Inverse and forward dynamics of N-3RPS manipulator with lockable joints

    , Article Robotica ; Volume 34, Issue 6 , 2016 , Pages 1383-1402 ; 02635747 (ISSN) Taherifar, A ; Salarieh, H ; Alasty, A ; Honarvar, M ; Sharif University of Technology
    Cambridge University Press 
    Abstract
    The N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on... 

    Singularity-free planning for a robot cat free-fall with control delay: role of limbs and tail

    , Article 2017 8th International Conference on Mechanical and Aerospace Engineering, ICMAE 2017, 22 July 2017 through 25 July 2017 ; 2017 , Pages 215-221 ; 9781538633052 (ISBN) Sadati, S. M. H ; Meghdari, A ; Sharif University of Technology
    Abstract
    Cat free fall righting maneuverer has inspired many aerial, space and legged robotic research. Conservation of angular momentum principle is used to derive the inverse differential kinematic and TMT vector form dynamics of the motion for three robotic models: a two-link model, a three-link model with tail, and a comprehensive eight-link model with the addition of legs. The path planning problem in the presence of geometric and kinematic constraints is addressed using a novel singularity free single shooting optimization method. While a 2 DOF torso is sufficient to perform a full maneuver, the addition of the tail reduces the time and increases the maneuverability despite the leg motions that... 

    Design and analysis of a 3-link micro-manipulator actuated by piezoelectric layers

    , Article Mechanism and Machine Theory ; Volume 112 , 2017 , Pages 43-60 ; 0094114X (ISSN) Ahmadian, M. T ; Jafarishad, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The purpose of this paper is to design and analyze a 3-link micro-device proposed as a micro-manipulator. This micro-manipulator includes 3 micro-beams as links connected to one another with no conventional or flexural joints. While the structure of the micro-manipulator is monolithic, end-effector workspace is achieved through deflection of links which is actuated by piezoelectric layers. By combining static analysis of the links through a multilayer piezoelectric beam model and kinematic analysis of the micro-manipulator, inverse kinematic has been solved utilizing the Taylor series expansion technique and the perturbation method. The obtained results through the present model reveal that... 

    Density-based global sensitivity analysis of sheet-flow travel time: kinematic wave-based formulations

    , Article Journal of Hydrology ; Volume 559 , April , 2018 , Pages 556-568 ; 00221694 (ISSN) Hosseini, S. M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Despite advancements in developing physics-based formulations to estimate the sheet-flow travel time (tSHF), the quantification of the relative impacts of influential parameters on tSHF has not previously been considered. In this study, a brief review of the physics-based formulations to estimate tSHF including kinematic wave (K-W) theory in combination with Manning's roughness (K-M) and with Darcy-Weisbach friction formula (K-D) over single and multiple planes is provided. Then, the relative significance of input parameters to the developed approaches is quantified by a density-based global sensitivity analysis (GSA). The performance of K-M considering zero-upstream and uniform flow depth... 

    On the design of robotic fish based on lighthill's small-amplitude elongated body theory

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 11 , 2009 , Pages 119-125 ; 9780791848722 (ISBN) Shahi, M ; Meghdari, A ; Sharif University of Technology
    2009
    Abstract
    This paper addresses the issues of energy efficiency in robotic fish design by use of hydrodynamic models. The use of LighthilPs small-amplitude elongated body theory for designing of robotic fish, obtaining optimal kinematics and dynamic analysis with emphasis on compliant mechanism is presented. Simulation results for a sample case have demonstrated the importance of proposed approach in robotic fish design. Copyright © 2008 by ASME  

    An optimization-based method for prediction of lumbar spine segmental kinematics from the measurements of thorax and pelvic kinematics

    , Article International Journal for Numerical Methods in Biomedical Engineering ; July , 2015 , Volume 31, Issue 12 ; 20407939 (ISSN) Shojaei, I ; Arjmand, N ; Bazrgari, B ; Sharif University of Technology
    Wiley-Blackwell  2015
    Abstract
    Given measurement difficulties, earlier modeling studies have often used some constant ratios to predict lumbar segmental kinematics from measurements of total lumbar kinematics. Recent imaging studies suggested distribution of lumbar kinematics across its vertebrae changes with trunk rotation, lumbar posture, and presence of load. An optimization-based method is presented and validated in this study to predict segmental kinematics from measured total lumbar kinematics. Specifically, a kinematics-driven biomechanical model of the spine is used in a heuristic optimization procedure to obtain a set of segmental kinematics that, when prescribed to the model, were associated with the minimum... 

    An experimental study on the kinematics of a skilled service in playing tennis

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 2 , 2010 , Pages 565-568 ; 9780791844267 (ISBN) Ahmadi, S. M ; Shirzad, E ; Sajadi, B ; Cheraghi, M ; Haghighi, K ; Sharif University of Technology
    Abstract
    This paper studies the effective parameters of a skilled service in playing tennis and determines their relationship with skill deals. Effective service in tennis plays an important role in gaining more desirable result and the most important factor of success in getting scores depends on the player's skills in serving an effective service. The characteristics of a good service are the high speed of the ball and the precision of landing the ball. The several parameters affecting on these two characteristic in the service, are studied in this paper. Therefore, the Kinematic parameters of 8 Iranian professional tennis athletes of first division tennis league and also 8 non-professional Iranian... 

    Adding backlash to the connection elements can improve the performance of a robotic exoskeleton

    , Article Mechanism and Machine Theory ; Volume 152 , 2020 Shafiei, M ; Behzadipour, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Kinematic mismatch between exoskeletons and human body results in excess internal forces/torques and hence discomfort as well as increase the power consumption. The connection stiffness has been shown to have potentials for minimizing the kinematic mismatch effects. However, realization of a desired stiffness in the connection element seems difficult if not impractical. In this work, adding controlled backlash to the exoskeleton-body connection is investigated as a possible solution for the kinematic mismatch challenge. A stiffness model which includes backlash parameters was formulated and identified experimentally using three male subjects on a typical lower extremity exoskeleton. A... 

    A three-invariant cap plasticity with isotropic-kinematic hardening rule for powder materials: Model assessment and parameter calibration

    , Article Computational Materials Science ; Volume 41, Issue 1 , 2007 , Pages 1-12 ; 09270256 (ISSN) Khoei, A. R ; DorMohammadi, H ; Sharif University of Technology
    2007
    Abstract
    The constitutive modeling of powder is clearly a keystone of successful quantitative solution possibilities. Without a reasonable constitutive model, which can reproduce complicated powder behavior under loading conditions, the computations are worthless. In this paper, a three-invariant cap plasticity model with isotropic-kinematic hardening rule is presented for powder materials. A generalized single-cap plasticity is developed which can be compared with some common double-surface plasticity models proposed for powders in literature. The hardening rule is defined based on the isotropic and kinematic material functions. The constitutive elasto-plastic matrix and its components are derived... 

    On the implementation of a multi-surface kinematic hardening plasticity and its applications

    , Article International Journal of Plasticity ; Volume 21, Issue 9 , 2005 , Pages 1741-1770 ; 07496419 (ISSN) Khoei, A. R ; Jamali, N ; Sharif University of Technology
    2005
    Abstract
    This paper is concerned with an application of the multi-surface plasticity in solid mechanics and geotechnical problems. The model is of a von-Mises type with associated flow rule, originally proposed by Montans. The Mroz translation rule is implemented to the movements of the yield surfaces and the fully implicit scheme with radial mapping method is applied in numerical computations. Algorithmic consistent tangent modulus with numerical integration algorithm of constitutive equations is extracted. The model is developed in the class of kinematic hardening models, so the 'Masing' rule is preserved. The model is able to consider the plastic strain accumulation in constant axial stress state,... 

    Control of Locomotion in a Two-Leg Robot with Uncertain Frictional Effects

    , M.Sc. Thesis Sharif University of Technology Khodabakhsh, Mohammad (Author) ; Vosoughi, Golamreza (Supervisor)
    Abstract
    Microrobots design and manufacturing has been one of interesting fields in robotics in recent decades. They have been designed in various types so far. In this paper a two-leg microrobot is simulated and controlled by using LuGre friction model.
    The proposed microrobot is driven by a piezoelectric actuator mounted between centers of two legs. The piezoelectric is actuated by a frequency near the natural frequency of the robot. The nonlinear dynamical equations of the system are obtained considering LuGre friction model. To control the system, the equations of motion are linearized using feedback linearization method. Then a stabilizing control law is designed and the robot model is... 

    The MOG weak field approximation - II. Observational test of Chandra X-ray clusters

    , Article Monthly Notices of the Royal Astronomical Society ; Volume 441, Issue 4 , June , 2014 , Pages 3724-3732 ; ISSN: 00358711 Moffat, J. W ; Rahvar, S ; Sharif University of Technology
    Abstract
    We apply the weak field approximation limit of the covariant scalar-tensor-vector gravity theory, so-called MOdified gravity (MOG), to the dynamics of clusters of galaxies by using only baryonic matter. The MOG effective gravitational potential in the weak field approximation is composed of an attractive Newtonian term and a repulsive Yukawa term with two parameters α and μ. The numerical values of these parameters have been obtained by fitting the predicted rotation curves of galaxies to observational data, yielding the best-fitting result: α =8.89±0.34 and μ = 0.042 ± 0.004 kpc-1. We extend the observational test of this theory to clusters of galaxies, using data for the ionized gas and... 

    Kinematic control of a new hyper-redundant manipulator with lockable joints

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1742-1752 ; 10263098 (ISSN) Taherifar, A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Kinematic control of a special hyper-redundant manipulator with lockable joints is studied. In this manipulator, the extra cables are replaced by a locking system to reduce the weight of the structure and the number of actuators. This manipulator has discrete and continuous variables due to its locking system. Therefore, a hybrid approach has been adopted in control. At first the forward kinematics and velocity kinematics of this manipulator are derived, and then a novel closed-loop control algorithm is presented. This algorithm consists of decision making, an inner loop controller, and kinematic calculation blocks. The decision making block is the logical part of the control scheme in which... 

    Density waves in debris discs and galactic nuclei

    , Article Monthly Notices of the Royal Astronomical Society ; Volume 421, Issue 3 , 2012 , Pages 2368-2383 ; 00358711 (ISSN) Jalali, M. A ; Tremaine, S ; Sharif University of Technology
    2012
    Abstract
    We study the linear perturbations of collisionless near-Keplerian discs. Such systems are models for debris discs around stars and the stellar discs surrounding supermassive black holes at the centres of galaxies. Using a finite-element method, we solve the linearized collisionless Boltzmann equation and Poisson's equation for a wide range of disc masses and rms orbital eccentricities to obtain the eigenfrequencies and shapes of normal modes. We find that these discs can support large-scale 'slow' modes, in which the frequency is proportional to the disc mass. Slow modes are present for arbitrarily small disc mass so long as the self-gravity of the disc is the dominant source of apsidal... 

    Generalized Schwarzschild's method

    , Article Monthly Notices of the Royal Astronomical Society ; Volume 410, Issue 3 , 2011 , Pages 2003-2015 ; 00358711 (ISSN) Jalali, M. A ; Tremaine, S ; Sharif University of Technology
    2011
    Abstract
    We describe a new finite element method (FEM) to construct continuous equilibrium distribution functions (DFs) of stellar systems. The method is a generalization of Schwarzschild's orbit superposition method from the space of discrete functions to continuous ones. In contrast to Schwarzschild's method, FEM produces a continuous DF and satisfies the intra-element continuity and Jeans equations. The method employs two finite element meshes, one in configuration space and one in action space. The DF is represented by its values at the nodes of the action-space mesh and by interpolating functions inside the elements. The Galerkin projection of all equations that involve the DF leads to a linear... 

    Multi-objective optimisation of McPherson strut suspension mechanism kinematics using Random Search Method

    , Article Indian Journal of Science and Technology ; July , 2015 , Volume 8, Issue 16 ; 09746846 (ISSN) Nasiri, S ; Sina, N ; Eslami, A ; Sharif University of Technology
    Indian Society for Education and Environment  2015
    Abstract
    McPherson suspension mechanism is one of the widespread mounted mechanisms in front axle of Front Wheel Drive (FWD) vehicles with transverse engine. In this study the kinematics of McPherson suspension mechanism is optimised in order to achieve the desired kinematic behavior and improve vehicle stability. First, the mechanism was modeled in Mechanical Desktop software package and the model transferred to Working Model 3D software for kinematic analysis. Then results of kinematic simulation compared to design criteria and as target function is established, by choosing the optimal amount of optimisation variables the amount of cost function has been minimized. Because of simple... 

    Finite element modelling of perturbed stellar systems

    , Article Monthly Notices of the Royal Astronomical Society ; Volume 404, Issue 3 , Jan , 2010 , Pages 1519-1528 ; 00358711 (ISSN) Jalali, M. A ; Sharif University of Technology
    2010
    Abstract
    I formulate a general finite element method (FEM) for self-gravitating stellar systems. I split the configuration space to finite elements, and express the potential and density functions over each element in terms of their nodal values and suitable interpolating functions. General expressions are then introduced for the Hamiltonian and phase-space distribution functions of the stars that visit a given element. Using the weighted residual form of Poisson's equation, I derive the Galerkin projection of the perturbed collisionless Boltzmann equation, and assemble the global evolutionary equations of nodal distribution functions. The FEM is highly adaptable to all kinds of potential and density...