Loading...
Search for: harmonic-analysis
0.009 seconds
Total 144 records

    Single-phase PWM rectifier parameters optimized by using the intelligent method

    , Article Proceedings - 2010 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON-2010, 11 July 2010 through 15 July 2010, Irkutsk Listvyanka ; 2010 , Pages 677-681 ; 9781424476268 (ISBN) Jafari, F ; Dastfan, A ; Tahmasebi, R ; Rahideh, M ; Sharif University of Technology
    Abstract
    This paper is dealing with single phase PWM rectifier parameter optimization. A control loop has been designed to attain a suitable output DC voltage with minimum ripple, input current with minimum harmonic and maximum input power factor. In this paper these parameters have been optimized by using Genetic algorithm. To verify the effectiveness of proposed optimization, different simulations have been done. The simulation results prove that the proposed system working good  

    Formulation of differential transfer matrix method in cylindrical geometry

    , Article Proceedings of SPIE - The International Society for Optical Engineering, 25 January 2010 through 28 January 2010 ; Volume 7597 , January , 2010 ; 0277786X (ISSN) ; 9780819479938 (ISBN) Jiani, M ; Khorasani, S ; Rashidian, B ; Mohammadi, S ; Sharif University of Technology
    2010
    Abstract
    Transfer and scattering matrix methods are widely in use for description of the propagation of waves in multilayered media. When the profile of refractive index is continuous, however, a modified formulation of transfer matrices does exist, which provides a complete analytical solution of the wave phenomena in such structures. Previously reported variations of the so-called Differential Transfer Matrix Method (DTMM) had been limited to Cartesian geometry where layered media form one-dimensional structures and plane waves are used as basis functions. In this work, we extend the formalism to cylindrical geometry with radial symmetry, in which Bessel functions need to be employed as basis... 

    Multivariable control of the bifurcation and harmonic perturbations to improve the performance of air-handling units

    , Article ISA Transactions ; Volume 60 , 2016 , Pages 119-127 ; 00190578 (ISSN) Moradi, H ; Vossoughi, G ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2016
    Abstract
    In this research, nonlinear dynamics of an air-ehandling unit (AHU) is studied for tracking objectives, in the presence of harmonic perturbations. Three arbitrary realistic set-paths are considered for the indoor temperature and relative humidity. Two controllers based on feedback linearization (FBL) and pole placement approaches are designed to preserve the dynamic system around the desired tracking paths. It is shown that FBL controller works efficiently in bifurcation control and transforms the quasi-periodic limit cycles into the periodic ones (and consequently comfortable indoor conditions). In addition, FBL controller guarantees suppression of larger periodic limit cycles into the... 

    Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 303 , 2016 , Pages 75-100 ; 00457825 (ISSN) Mehri, M ; Asadi, H ; Wang, Q ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The present research deals with bifurcation and vibration responses of a composite truncated conical shell with embedded single-walled carbon nanotubes (SWCNTs) subjected to an external pressure and axial compression simultaneously. The distribution of reinforcements through the thickness of the shell is assumed to be either uniform or functionally graded. The equations of motion are established using Green-Lagrange type nonlinear kinematics within the framework of Novozhilov nonlinear shell theory. Linear membrane prebuckling analysis is conducted to extract the prebuckling deformations. The stability equations are derived by applying the adjacent equilibrium criterion to the prebuckling... 

    Motion analysis of a vibrational microrobot with two perpendicular harmonic actuators and deriving the design parameters in stick-slip mode

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 11, Issue 2 , 2016 ; 15551415 (ISSN) Jalili, H ; Vossoughi, G ; Salarieh, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    In this paper, the stick-slip motion of a microrobot with two perpendicular vibrational actuators is studied. This motion is based on the friction drive principle. To determine the effective parameters in the motion of microrobot, the equations of motion of the microrobot are derived. To simplify the equations for determining the design parameters, the vibrational actuators are modeled with two perpendicular harmonic forces. To study the motion dynamics of the microrobot, its equation of motion is derived in a nondimensional expression by defining the nondimensional effective parameters. The Fourier expansion (F.E.) method is used to analyze the numerical results and it showed some... 

    Investigation of a class-j mode power amplifier in presence of a second-harmonic voltage at the gate node of the transistor

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 65, Issue 8 , 2017 , Pages 3024-3033 ; 00189480 (ISSN) Alizadeh, A ; Medi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, performance of class-J mode power amplifiers (PAs) is studied when a second-harmonic voltage component is added to the input node of the device. Theoretical formulations for the optimum load impedances, output power, and drain efficiency are developed for this case, and it is shown that the inclusion of a proper second-harmonic voltage at the gate node of the transistor improves the drain efficiency and output power. To check the accuracy of the theoretical analyses and the simulation results, a proof-of-concept 1-GHz 0.65-W class-J PA is fabricated in a 0.25-μm AlGaAs-InGaAs pHEMT technology. The nonlinear gate-source capacitor (CGS) of the transistor is employed to generate... 

    Class-J2 Power Amplifiers

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 64, Issue 8 , 2017 , Pages 1989-2002 ; 15498328 (ISSN) Alizadeh, A ; Yaghoobi, M ; Medi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper presents the theoretical introduction and experimental validation of the "Class-J2 Mode Power Amplifier," which provides higher efficiency and output power compared with conventional class-J mode counterpart. This mode of operation is realized by injection of the second-harmonic current to drain node of a class-J power amplifier (PA) to reduce the 45° phase shift between drain current and voltage signals. Similar to class-J PAs, the second-harmonic impedance of class-J2 PAs is purely reactive to simplify the design of the output matching network. The auxiliary second-harmonic injection circuit comprises a transistor biased in class-B mode followed by a class-C biased amplifier to... 

    A fast and cost-effective control of a three-phase stand-alone inverter

    , Article 8th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2017, 14 February 2017 through 16 February 2017 ; 2017 , Pages 67-72 ; 9781509057665 (ISBN) Mazloum, N ; Keikha, O ; Yaghoubi, M ; Tahami, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper proposes a straightforward control method for voltage control of a three-phase transformer-based inverter in uninterruptible power supplies or distributed generation systems. The approach offers a dual-loop design consisting inner current control loop and outer voltage loop. Sliding mode current controller provides desired bandwidth for voltage controller which consists of a state feedback term for stabilization and resonant term for harmonic damping. The proposed scheme provides fast dynamic response and low total harmonic distortion even for high power inverters with the limitations of switching frequency and LC filter components. Experimental studies for 2KVA linear and... 

    Modeling and control of zero-sequence circulating current in parallel converters with space vector modulation

    , Article IEEE Journal of Emerging and Selected Topics in Power Electronics ; Volume 5, Issue 1 , 2017 , Pages 363-377 ; 21686777 (ISSN) Ravanji, M. H ; Amouzegar Ashtiani, N ; Parniani, M ; Mokhtari, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    The use of parallel converters is one of the most practical solutions to solve the problem of transmitting bulk power generated in megawatt wind turbines to the grid. In spite of several advantages of paralleling, some considerations must be taken into account. Zero-sequence circulating current flowing between parallel converters is one of these concerns. Characteristic differences and discrepancy of zero-axis duty cycles of the parallel converters are considered as the main origins of this current. This paper investigates another source of this phenomenon in space vector modulation controlled converters. This unnoticed source is the notable third-harmonic voltage generated in the... 

    Harmonic disturbance attenuation in a three-pole active magnetic bearing test rig using a modified notch filter

    , Article JVC/Journal of Vibration and Control ; Volume 23, Issue 5 , 2017 , Pages 770-781 ; 10775463 (ISSN) Mahdi Darbandi, S ; Behzad, M ; Salarieh, H ; Mehdigholi, H ; Sharif University of Technology
    Abstract
    This study is concerned with the problem of harmonic disturbance rejection in active magnetic bearing systems. A modified notch filter is presented to identify both constant and harmonic disturbances caused by sensor runout and mass unbalance. The proposed method can attenuate harmonic displacement and currents at the synchronous frequency and its integer multiples. The reduction of stability is a common problem in adaptive techniques because they alter the original closed-loop system. The main advantage of the proposed method is that it is possible to determine the stability margins of the system by few parameters. The negative phase shift of the modified notch filter can be tuned to... 

    An approach in deformation and stress analysis of elasto-plastic sandwich cylindrical shell panels based on harmonic differential quadrature method

    , Article Journal of Sandwich Structures and Materials ; Volume 19, Issue 2 , 2017 , Pages 167-191 ; 10996362 (ISSN) Shokrollahi, H ; Fallah, F ; Kargarnovin, M. H ; Sharif University of Technology
    Abstract
    Using harmonic differential quadrature method, an approach to analyze sandwich cylindrical shell panels with any sort of boundary conditions under a generally distributed static loading, undergoing elasto-plastic deformation is proposed. The faces of the sandwich shell panel are made of some isotropic materials with linear work hardening behavior while the core is assumed to be an isotropic material experiencing only elastic behavior. The faces are modeled as thin cylindrical shells obeying the Kirchhoff–Love assumptions. For the core material, it is assumed to be thick and the in-plane stresses are negligible. Upon application of an inner and outer general lateral loading, the governing... 

    Distributed class-J power amplifiers

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 65, Issue 2 , 2017 , Pages 513-521 ; 00189480 (ISSN) Alizadeh, A ; Medi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper presents the design and implementation of a distributed class-J power amplifier (DJPA) in a 0.25-μm AlGaAs-InGaAs pHEMT technology. Class-J mode of operation is introduced in design of distributed power amplifiers (DPAs) to achieve high power added efficiencies (PAEs) over wide frequency ranges. Extensive load-pull (LP) and source-pull (SP) simulations are performed to show that class-J PAs are less sensitive to proper termination of higher order harmonics, and high PAE and output power can be obtained even if the second, third, fourth, and fifth harmonics comprise a real impedance. This is essential in DPAs as the higher order harmonics of the frequencies at lower side of the... 

    Effect of out-of-band blockers on the required linearity, phase noise, and harmonic rejection of sdr receivers without input saw filter

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 66, Issue 11 , 2018 , Pages 4913-4926 ; 00189480 (ISSN) Rasekh, A ; Bakhtiar, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    The required linearity of wideband receivers for applications, such as software-defined radio in the absence of input surface-acoustic wave (SAW) filters, is studied. It is shown that the required linearity of wideband SAW-less receivers is surprisingly higher than what has been commonly assumed. For these receivers, although the out-of-band blockers can reduce the compression point of the receiver, they can also potentially generate interferers that appear in the desired frequency band, resulting in higher noise floor and signal corruption. The required out-of-band IIP2 and IIP3 of low-noise amplifier (LNA) and mixer for single and concurrent applications are analytically derived. The... 

    Active damping of torsional vibrations due to the sub-harmonic instability on a synchronous generator

    , Article 20th European Conference on Power Electronics and Applications, EPE 2018 ECCE Europe, 17 September 2018 through 21 September 2018 ; 2018 ; 9789075815283 (ISBN) Peyghami, S ; Azizi, A ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Sub-harmonic stability issues due to the interaction between a load-commutated motor drive and a synchronous turbo-generator train in a Liquefied Natural Gas (LNG) station are studied in this paper. The sub-harmonic current injected by motor drives may excite the mechanical torsional modes of turbogenerator train. In this paper, the electro-mechanical interaction phenomenon is investigated and an active damper is proposed to absorb the sub-harmonic currents of motor drives and increase the damping of the electro-mechanical system. Simulations and experiments validate the instability problem and effectiveness of the proposed solution. © 2018 EPE Association  

    A modulation method for leakage current reduction in a three-phase grid-tie quasi-Z-source inverter

    , Article IEEE Transactions on Power Electronics ; 2018 ; 08858993 (ISSN) Noroozi, N ; Yaghoubi, M ; Zolghadri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    The leakage current originated from the fluctuations of the common-mode voltage (CMV) is an issue in a transformerless grid-connected photovoltaic (PV) system. In this paper, a modified space vector modulation based on the Fourier transform analysis is proposed to reduce the leakage current in a three-phase quasi-Z-source inverter (qZSI). The CMV harmonic content in a qZSI contains low and high-frequency harmonics which cause safety and EMI problems respectively. By implementing the proposed modulation in a three-phase qZSI, the low-frequency harmonics of the CMV are mainly reduced. The distribution of the high-frequency harmonics is also modified in a way they can be simply filtered.... 

    Performance analysis of linear variable reluctance resolvers based on an improved winding function approach

    , Article IEEE Transactions on Energy Conversion ; Volume 33, Issue 3 , 2018 , Pages 1422-1430 ; 08858969 (ISSN) Daniar, A ; Nasiri Gheidari, Z ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Linear variable reluctance (LVR) resolvers have substantial benefits that make them suitable for linear motion control drives. The optimal design of LVR resolvers needs an accurate modeling that is usually achieved by a three-dimensional (3-D) time-stepping finite element method (TSFEM). However, the 3-D TSFEM is a very time-consuming method and is unsuitable for cousage with optimization algorithms. So, in this paper an accurate analytical model based on an improved winding function method is proposed. The proposed model is used to calculate the inductances, air-gap flux density, induced voltages, and linear position error. The distinguished feature of the proposed model is the direct usage... 

    Efficiency enhancement of time-modulated arrays with optimized switching sequences

    , Article IEEE Transactions on Antennas and Propagation ; Volume 66, Issue 7 , July , 2018 , Pages 3411-3420 ; 0018926X (ISSN) Mazaheri, M. H ; Fakharzadeh, M ; Akbari, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    The conventional time-modulated arrays (TMAs) have a low radiation efficiency, since each antenna turns off at specific time slots. In this paper, first, the efficiency of TMA is investigated analytically. Next, the optimized switching sequences are proposed to enhance the radiation efficiency of a specific sideband, while preserving the level of the other sidebands. The practical hardware limitations are considered in the switching sequence design. Moreover, a low-cost flexible eight-element printed dipole array operating at 1.2-1.4 GHz is implemented to verify the proposed algorithms. The measured radiation patterns indicate that by applying the proposed sequences, the TMA efficiency... 

    Rotational symmetry breaking toward a string-valence bond solid phase in frustrated J1−J2 transverse field Ising model

    , Article Physica C: Superconductivity and its Applications ; Volume 549 , 2018 , Pages 1-3 ; 09214534 (ISSN) Sadrzadeh, M ; Langari, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    We study the effect of quantum fluctuations by means of a transverse magnetic field (Γ) on the highly degenerate ground state of antiferromagnetic J1−J2 Ising model on the square lattice, at the limit J2/J1=0.5. We show that harmonic quantum fluctuations based on single spin flips can not lift such degeneracy, however an-harmonic quantum fluctuations based on multi spin cluster flip excitations lift the degeneracy toward a unique ground state with string-valence bond solid (VBS) nature. A cluster operator formalism has been implemented to incorporate an-harmonic quantum fluctuations. We show that cluster-type excitations of the model lead not only to lower the excitation energy compared with... 

    Controlling the multi-electron dynamics in the high harmonic spectrum from N2O molecule using TDDFT

    , Article Journal of Chemical Physics ; Volume 148, Issue 23 , 2018 ; 00219606 (ISSN) Monfared, M ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    In this study, high harmonic generation from a multi-atomic nitrous oxide molecule was investigated. A comprehensive three-dimensional calculation of the molecular dynamics and electron trajectories through an accurate time-dependent density functional theory was conducted to efficiently explore a broad harmonic plateau. The effects of multi-electron and inner orbitals on the harmonic spectrum and generated coherent attosecond pulses were analyzed. The role of the valence electrons in controlling the process and extending the harmonic plateau was investigated. The main issue of producing a super-continuum harmonic spectrum via a frequency shift was considered. The time-frequency... 

    Higher order power reactor noise analysis: the multigroup diffusion model

    , Article Annals of Nuclear Energy ; Volume 111 , 2018 , Pages 354-370 ; 03064549 (ISSN) Ayyoubzadeh, M ; Hosseini, A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Power reactor noise analysis is one of the most powerful tools in online monitoring and diagnostics of nuclear power reactors. Unfortunately, since such an analysis belongs to the non-linear “parametric excitation” realm, its theoretical aspects and relations have been mostly carried out after linearization. In this paper a general framework, i.e. the Ladder Expansion Method, is developed to convert such equations to a series of coupled linear equations, up to any desired accuracy. This method is then applied to the single mode random fluctuations of the absorption cross sections in a power reactor which is modelled by the multigroup diffusion equation with multiple delayed neutron groups. A...