Loading...
Search for: fourier-transform-infrared-spectroscopy
0.014 seconds
Total 449 records

    Fabrication of metal nanowires based on self assembly of tryptophan-capped gold nanoparticle onto DNA network template

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 1041-1049 ; 14757435 (ISSN) Sheikholeslami, Z ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    2009
    Abstract
    In this study, synthesis of conductive metal nanowires by using aligned and immobilised DNA strand on solid substrate is reported. The nanoporous gold film was prepared by electrostatic self assembly of gold nanoparticles capped with tryptophan. Tryptophan would improve surface properties of gold nanoparticles for strongly attaching to DNA. Fourier transform infrared (FTIR) spectroscopy confirmed that gold nanoparticles have been capped by tryptophan. Also measured zeta potential shows that there are positive charges on the surface of gold nanoparticles. Investigations by AFM observati on substantially confirm that tryptophan-capped gold nanoparticles can be bonded to DNA template... 

    Performance of silver nanoparticle fixed on magnetic iron nanoparticles (Fe3O4−Ag) in water disinfection

    , Article Micro and Nano Letters ; Volume 13, Issue 4 , April , 2018 , Pages 436-441 ; 17500443 (ISSN) Sharifi, R ; Hassani, A. H ; Ahmad Panahi, H ; Borghei, M ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    Microbial contamination poses a serious threat to human health. The evaluation of alternative systems and their reliability for the treatment of water is essential. In this work, a new method for the deposit of more silver nanoparticles (AgNPs) on the external surface of Fe3O4 nanoparticles is presented. Fe3O4 nanoparticles were synthesised by chemical co-precipitation and were modified in two stages using 3-mercaptopropyl trimethoxysilane and grafting allyl glycidyl ether and N, N-dimethylacrylamide. Then, AgNPs were loaded onto the modified Fe3O4 to be used for water disinfection. The resulting nanoparticles were characterised by transmission electron microscopy, X-ray powder diffraction,... 

    Enhancement in reactivity via sulfidation of FeNi@BC for efficient removal of trichloroethylene: Insight mechanism and the role of reactive oxygen species

    , Article Science of the Total Environment ; Volume 794 , 2021 ; 00489697 (ISSN) Shan, A ; Idrees, A ; Zaman, W. Q ; Abbas, Z ; Farooq, U ; Ali, M ; Yang, R ; Zeng, G ; Danish, M ; Gu, X ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A novel catalyst of sulfidated iron-nickel supported on biochar (S-FeNi@BC) was synthesized to activate persulfate (PS) for the removal of trichloroethylene (TCE). A number of techniques including XRD, SEM, TEM, FTIR, BET and EDS were employed to characterize S-FeNi@BC. The influence of sulfur to iron ratio (S/F) on TCE removal was investigated by batch experiments and a higher TCE removal (98.4%) was achieved at 0.22/1 ratio of S/F in the PS/S-FeNi@BC oxidation system. A dominant role in iron species conversion was noticed by the addition of sulfur in FeNi@BC system. Significant enhancement in recycling of the dissolved and surface Fe(II) was confirmed which contributed to the generation of... 

    Synthesis of nZVI-Ni@BC composite as a stable catalyst to activate persulfate: Trichloroethylene degradation and insight mechanism

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Shan, A ; Idrees, A ; Zaman, W. Q ; Abbas, Z ; Ali, M ; Rehman, M. S. U ; Hussain, S ; Danish, M ; Gu, X ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In Fenton-like oxidation processes, the use of biochar (BC) as support material for the nanoscale zero valent iron-nickel (nZVI-Ni) bimetallic particles attained much attention to activate persulfate (PS) for TCE degradation in aqueous medium. In present work, nZVI-Ni@BC particles with nZVI-Ni to BC mass ratio of 1:5 exhibited excellent results (> 99 % ± 0.24) for TCE degradation. The physico-chemical characteristics, surface morphologies, and elemental mapping of the synthesized nZVI-Ni@BC particles investigated through SEM, EDX, TEM, XPS, XRD, BET and FTIR spectroscopy. For the nZVI-Ni@BC-persulfate system, the effects of PS concentration, initial pH, inorganic ions and natural organic... 

    Mesoporous nanostructures of NiCo-LDH/ZnCo2O4 as an efficient electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 604 , 2021 , Pages 832-843 ; 00219797 (ISSN) Shamloofard, M ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Increasing energy demands for pollution-free and renewable energy technologies have stimulated intense research on the development of inexpensive, highly efficient, and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this study, a superior OER performance was achieved using a tri-metallic (Zn, Co, Ni) high-performance electrocatalyst. We successfully fabricated a peony-flower-like hierarchical ZnCo2O4 through an additive-free hydrothermal reaction followed by heat treatment. Then NiCo-LDH (layered double hydroxides) nano-flakes was electrodeposited on the ZnCo2O4/GCE surface to prepare NiCo-LDH/ZnCo2O4/GCE which was used as electrode for OER. The structure and... 

    Dual-electrocatalysis behavior of star-like zinc-cobalt-sulfide decorated with cobalt-molybdenum-phosphide in hydrogen and oxygen evolution reactions

    , Article Nanoscale ; Volume 13, Issue 41 , 2021 , Pages 17576-17591 ; 20403364 (ISSN) Shamloofard, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Although important advances have been acquired in the field of electrocatalysis, the design and fabrication of highly efficient and stable non-noble earth-abundant metal catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remain a significant challenge. In this study, we have designed a superior bifunctional catalyst for OER and HER in alkaline media based on the Co-Mo-P/Zn-Co-S multicomponent heterostructure. The as-prepared multicomponent heterostructure was successfully obtained via a simple three-step hydrothermal-sulfidation-electrodeposition process consisting of star-like Co-Zn-S covered with Co-Mo-P. The structure and morphology evaluation of the... 

    Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by the freeze-gelation method

    , Article Materials Research Express ; Volume 6, Issue 11 , 2019 ; 20531591 (ISSN) Shamloo, A ; Kamali, A ; Bahrani Fard, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Three-dimensional porous scaffolds are essential in tissue engineering applications. One of the most conventional methods to form porosity in scaffolds is freeze-drying, which is not energy efficient and cost effective. Therefore in this work, it was experimentally investigated whether gelatin, with its unique mechanical properties and cell binding applications, could be used as a comprising polymer of scaffolds with porous structure made by the freeze-gelation method. Chitosan, gelatin and chitosan/gelatin scaffolds were fabricated by the freeze-gelation method and their behaviors, determined by analysis of scanning electron microscopy images, Fourier transform infrared spectroscopy,... 

    Novel modified starch-xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization

    , Article Carbohydrate Polymers ; Volume 79, Issue 4 , 2010 , Pages 898-907 ; 01448617 (ISSN) Shalviri, A ; Liu, Q ; Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    Abstract
    This work was intended to develop a new cross-linked gelatinized starch-xanthan gum hydrogel system, to characterize the properties of the new material, and to explore its potential applications in controlled drug delivery. Cross-linked starch-xanthan gum polymers were synthesized with varying levels of xanthan gum and sodium trimetaphosphate (STMP). The reaction of starch-xanthan gum polymers with STMP was examined using solid 31P NMR spectroscopy and FTIR. Morphology of the films made from the new polymers was studied by scanning electron microscopy. The swelling properties and the network parameters such as gel mesh size of the films were investigated. The permeation of solutes with... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; 2017 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 4 , 2018 , Pages 2256-2267 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    An electrochemical sensing platform based on nitrogen-doped hollow carbon spheres for sensitive and selective isoprenaline detection

    , Article Journal of Electroanalytical Chemistry ; Volume 847 , 2019 ; 15726657 (ISSN) Shahrokhian, S ; Panahi, S ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this work, uniform and monodisperse hollow carbon spheres (HCSs) are synthesized through two different processes using polydopamine (PDA), as a carbon precursor, and silica core as a template, under the modified Stöber condition. The surface morphology of the synthesized structures is characterized by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier-transform infrared spectroscopy (FT-IR). In the next step, the electrochemical behavior of isoprenaline (ISPN) is investigated by using glassy carbon electrode modified with a thin film of the synthesized hollow carbon spheres. The electrochemical characterization of the modified electrodes is... 

    Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates

    , Article Talanta ; Volume 210 , 2020 Shahrokhian, S ; Ezzati, M ; Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, for the first time, we reported a fast and facile three-step in situ strategy for direct controllable growth of the Co3(BTC)2 MOFs thin films on the GCE, through the rapid conversion of the electrodeposited Co(OH)2 nano-flakes on rGO/GCE, to crystalline rectangular bar-shape structures of MOFs. X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and elemental mapping analysis used to the structural and morphological characterization of the well-synthesized MOFs. The as-prepared Co3(BTC)2 MOFs were used to construct a non-enzymatic sensing platform for determining the glucose... 

    PPI-dendrimer-functionalized magnetic metal-organic framework (fe3o4@mof@ppi) with high adsorption capacity for sustainable wastewater treatment

    , Article ACS Applied Materials and Interfaces ; Volume 12, Issue 22 , 2020 , Pages 25294-25303 Shahriyari Far, H ; Hasanzadeh, M ; Nashtaei, M. S ; Rabbani, M ; Haji, A ; Hadavi Moghadam, B ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Herein, a magnetic zirconium-based metal-organic framework nanocomposite was synthesized by a simple solvothermal method and used as an adsorbent for the removal of direct and acid dyes from aqueous solution. To enhance its adsorption performance, poly(propyleneimine) dendrimer was used to functionalize the as-synthesized magnetic porous nanocomposite. The dendrimer-functionalized magnetic nanocomposite was characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherms, and vibration sample magnetometer. The obtained results revealed the successful synthesis and functionalization of the... 

    Synthesis and characterization of a chitosan/gelatin transparent film crosslinked with a combination of EDC/NHS for corneal epithelial cell culture scaffold with potential application in cornea implantation

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 71, Issue 8 , 2022 , Pages 568-578 ; 00914037 (ISSN) Shahin, A ; Ramazani S. A, A ; Mehraji, S ; Eslami, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The diseases and disorders of the cornea may lead to blindness, and cornea transplantation has been an effective treatment in this regard. However, lack of cornea throughout the world makes this treatment difficult. Therefore, the first goal of the present study is to make a chitosan/gelatin hyaline film with NHS and EDC crosslinkers for transplanting the epithelial cells of the cornea. Two solutions of gelatin and chitosan were mixed homogeneously before crosslinking in ratios of 20/80, 30/70, 40/60, and 50/50 (Gel/Chi). After 24 hours, they were put in an oven to dry, then EDC and NHS were added to the mixture as crosslinker. Corneal epithelial cell morphology was assessed qualitatively... 

    Ni(II) 1D-coordination polymer/C 60 -modified glassy carbon electrode as a highly sensitive non-enzymatic glucose electrochemical sensor

    , Article Applied Surface Science ; Volume 478 , 2019 , Pages 361-372 ; 01694332 (ISSN) Shahhoseini, L ; Mohammadi, R ; Ghanbari, B ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A new non-enzymatic sensor for glucose is prepared by using of Ni(II)-one dimensional coordination polymer (Ni(II)-Cp) and C 60 . The Ni(II)-Cp prepared by slow diffusion and evaporation of two solution layers of NiCl 2 and diaza-macrocycle bearing two pyridine side arms (as the reported tecton) in DMF. The Ni(II)-Cp was characterized by powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) as well as Fourier transform infrared spectroscopy (FT-IR). C 60 as modified was added to Ni(II)-Cp for improving the electrical and chemical stability of the composite. The newly assembled Ni(II)-Cp/C 60 also coated on glassy carbon electrode (GC) to... 

    Corrosion protection of 1050 aluminium alloy using a smart self-cleaning TiO2-CNT coating

    , Article Surface and Coatings Technology ; Volume 275 , 2015 , Pages 224-231 ; 02578972 (ISSN) Shadravan, A ; Sadeghian, Z ; Nemati, A ; Mohammadi, S. P ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Inclusion of carbon nanotubes (CNTs) into the titanium dioxide coating on 1050 aluminium alloy was studied with the aim at enhancing the corrosion resistance of the surface. Composite coatings with various contents of CNTs were prepared via the sol-gel method and dip coating. XRD and FTIR phase and structural evaluations showed the presence of anatase phase in all thin films. Concomitant enhanced corrosion behaviour in the presence of CNTs was resulted from polarization potentiodynamic test. Band-gap evaluation was performed using absorbance spectra of coatings and showed considerable decrease of band-gap energy in the presence of CNTs. Photocatalytic properties and hydrophilicity of... 

    Decorative reduced graphene oxide/C3N4/Ag2O/conductive polymer as a high performance material for electrochemical capacitors

    , Article Applied Surface Science ; Volume 447 , 2018 , Pages 374-380 ; 01694332 (ISSN) Shabani Shayeh, J ; Salari, H ; Daliri, A ; Omidi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Here in, reduced graphene oxide/g-C3N4/Ag2O nano structure (RGO/CAO) was decorated through a facile and simple chemical method. After that RGO/CAO nano structure combined with poly aniline electrochemically to form a composite electrode. Several physicochemical techniques were applied to characterize the composite electrode such as X-ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, several electrochemical techniques were used to study the performance of composite electrode as an electrochemical capacitor. Results show that RGO/CAO nano... 

    Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation

    , Article Journal of Membrane Science ; Volume 537 , 2017 , Pages 140-150 ; 03767388 (ISSN) Seyed Shahabadi, S. M ; Rabiee, H ; Seyedi, S. M ; Mokhtare, A ; Brant, J. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this study, superhydrophobic dual layer membranes with highly porous structure were fabricated using electrospinning and electrospraying techniques. Electrospinning method was used to produce the support nanofibrous layer using polyvinylidene fluoride-co-hexafluoropropylene (PH) as the polymer and a mixed solvent system of N,N-Dimetylformamide (DMF) and acetone. Afterwards, hydrophobic, functionalized TiO2 nanoparticles were deposited on the surface of the support layer using the electrospraying technique. TiO2 chemical functionalization and their deposition on the support layer were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The... 

    Synthesis and characterization of bagasse poly(methyl methacrylate) graft copolymer

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , 2008 , Pages 49-54 ; 10221360 (ISSN) Sarvi, I ; Pourjavadi, A ; Noei Aghaei, M. A ; Sharif University of Technology
    2008
    Abstract
    Graft copolymerization of methyl methacrylate (MMA) was carried out on bagasse fibers in an aqueous medium using eerie ammonium nitrate (CAN) as initiator under a neutral atmosphere. In order to obtain the optimum condition for graft copolymerization, the effects of initiator concentration, temperature, time of reaction, and monomer concentration were studied. The maximum grafting percent was found to be 122%. The bagasse grafted poly(methyl methacrylate) was characterized by FTIR and its thermal behavior was characterized by TGA. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA  

    Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers

    , Article Journal of Molecular Catalysis A: Chemical ; Volume 359 , 2012 , Pages 42-48 ; 13811169 (ISSN) Samadi, M ; Shivaee, H. A ; Zanetti, M ; Pourjavadi, A ; Moshfegh, A ; Sharif University of Technology
    2012
    Abstract
    Multi wall carbon nanotube (MWCNT) doped ZnO nanofibers were fabricated by electrospinning for the first time. We have successfully demonstrated the photocatalytic activity of doped nanofibers under visible light. Scanning electron microscopy showed that the diameter of MWCNT-doped ZnO nanofibers varied from 120 to 300 nm without agglomeration of MWCNT. Fourier transform infrared spectroscopy and X-ray diffraction studies proved the formation of ZnO bond and wurtzite structure with smaller crystal size in doped nanofibers. Raman spectra demonstrated slight shift in bond position after nanofiber doping, indicating the chemical bond between MWCNT and ZnO. X-ray photoelectron spectroscopy...