Loading...
Search for: fluid-flow
0.01 seconds
Total 207 records

    Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 941-953 ; 13886150 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 941-953 ; 13886150 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Navier-Stokes calculations using a finite point meshless method

    , Article Scientia Iranica ; Volume 12, Issue 2 , 2005 , Pages 151-166 ; 10263098 (ISSN) Hannani, S. K ; Sadeghi, M. M ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    The objective of this research is to study the ability of a meshless method, called finite point method, in solving incompressible fluid flow problems using two stabilization schemes. The main goal of meshless methods is to reduce or remove the cost of grid generation. This issue is implemented using the satisfaction of governing differential equations on a regular or irregular set of nodes by interpolation functions, based on special least-squares approximations. In this research, the finite point method is used to solve the Stokes and the Navier-Stokes equations by employing two different stabilization schemes. In addition, the effects of least-squares approximations are studied. © Sharif... 

    Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 37, Issue 10 , 2013 , Pages 1247-1279 ; 03639061 (ISSN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    2013
    Abstract
    SUMMARY: In this paper, a numerical model is developed for the fully coupled hydro-mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non-wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two-phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid... 

    Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams

    , Article Computers and Geotechnics ; Volume 38, Issue 2 , March , 2011 , Pages 142-166 ; 0266352X (ISSN) Khoei, A. R ; Mohammadnejad, T ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled numerical model is presented for the finite element analysis of the deforming porous medium interacting with the flow of two immiscible compressible wetting and non-wetting pore fluids. The governing equations involving coupled fluid flow and deformation processes in unsaturated soils are derived within the framework of the generalized Biot theory. The displacements of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the present formulation. The other variables are incorporated into the model using the experimentally determined functions that define the relationship between the hydraulic... 

    CFD-DEM Model for Simulation of Non-spherical Particles in Hole Cleaning Process

    , Article Particulate Science and Technology ; Volume 33, Issue 5 , 2015 , Pages 472-481 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    During the well drilling process, particles are produced in different shapes. The shape of particles can influence the characteristics of particles transport process. The aim of this work is to analyze the effects of particle shape on the transportation mechanism. For this purpose, a three-dimensional model is prepared for simulation of particle transportation with spherical and non-spherical shapes, during deviated well drilling. The motion of particles and the non-Newtonian fluid flow are simulated via discrete element method and CFD, respectively. The two-way coupling scheme is used to incorporate the effects of fluid-particle interactions. Three different samples of non-spherical shapes... 

    Analytical study of fluid flow modeling by diffusivity equation including the quadratic pressure gradient term

    , Article Computers and Geotechnics ; Volume 89 , 2017 , Pages 1-8 ; 0266352X (ISSN) Abbasi, M ; Izadmehr, M ; Karimi, M ; Sharifi, M ; Kazemi, A ; Sharif University of Technology
    Abstract
    Diffusivity equation which can provide us with the pressure distribution, is a Partial Differential Equation (PDE) describing fluid flow in porous media. The quadratic pressure gradient term in the diffusivity equation is nearly neglected in hydrology and petroleum engineering problems such as well test analysis. When a compressible liquid is injected into a well at high pressure gradient or when the reservoir possess a small permeability value, the effect of ignoring this term increases. In such cases, neglecting this parameter can result in high errors. Previous models basically focused on numerical and semi-analytical methods for semi-infinite domain. To the best of our knowledge, no... 

    Numerical investigation of fluid flow and heat transfer characteristics in parallel flow single layer microchannels

    , Article Scientia Iranica ; Volume 16, Issue 4 B , 2009 , Pages 313-331 ; 10263098 (ISSN) Asgari, O ; Saidi, M. H ; Sharif University of Technology
    2009
    Abstract
    Heat generation from Very Large-Scale Integrated (VLSI) circuits increases with the development of high-density integrated circuit technology. One of the efficient techniques is liquid cooling by using a microchannel heat sink. Numerical simulations on the microchannel heat sink in the literature are mainly two dimensional. The purpose of the present study is to develop a three-dimensional procedure to investigate flow and conjugate heat transfer in the microchannel heat sink for electronic packaging applications. A finite volume numerical code with a multigrid technique, based on an additive correction multigrid (AC-MG) scheme, which is a high-performance solver, is developed to solve the... 

    Thermo-hydro-mechanical modeling of fracturing porous media with two-phase fluid flow using X-FEM technique

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 44, Issue 18 , October , 2020 , Pages 2430-2472 Khoei, A. R ; Mortazavi, S. M. S ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this paper, a fully coupled thermo-hydro-mechanical model is presented for two-phase fluid flow and heat transfer in fractured/fracturing porous media using the extended finite element method. In the fractured porous medium, the traction, heat, and mass transfer between the fracture space and the surrounding media are coupled. The wetting and nonwetting fluid phases are water and gas, which are assumed to be immiscible, and no phase-change is considered. The system of coupled equations consists of the linear momentum balance of solid phase, wetting and nonwetting fluid continuities, and thermal energy conservation. The main variables used to solve the system of equations are solid phase... 

    Numerical simulation of cold and hot water injection into naturally fractured porous media using the extended–FEM and an equivalent continuum model

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 46, Issue 3 , 2022 , Pages 617-655 ; 03639061 (ISSN) Mortazavi, S. M. S ; Pirmoradi, P ; Khoei, A. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    In this paper, a computational technique is presented for the isothermal and non-isothermal water injection into naturally fractured oil reservoirs. A remarkable number of naturally fractured reservoirs contain relatively heavy oils that could not be extracted economically; hence, the thermal recovery methods are extensively used for such reservoirs. In this study, the effectiveness of hot water injection over cold (isothermal) water injection in oil production is quantified. The influence of long and short fractures and their alignments on oil recovery are discussed. To this end, a 2D model for two-phase fluid flow and heat transfer is presented. The medium is assumed to be partially... 

    Developments of a 3-D CFD Model to Analyze the Gas Exchange Process in the Intake Manifold of an IVVT Engine Open Cycle

    , M.Sc. Thesis Sharif University of Technology Morovatiyan, Mohammad Rasoul (Author) ; Hosseini, Vahid (Supervisor) ; Mozaffari, Ali Asghar (Co-Advisor)
    Abstract
    A 3-D CFD model was developed to study effects of early/late intake valves opening/closing on flow field characteristics in the Intake Manifold (IM) of a spark-ignited gasoline 1.5 Litre, 4-cylinder engine. The main task of IM is to prepare essential air for combustion process into cylinder which should distribute air to total runners of IM properly. In this modeling, combustion process and valve behaviors and how to pass fluid flows through intake valves are simulated separately and they are added to it.HyperMesh, Fluent, GT-Power, and MATLAB were used to create a mathematical model on the geometries of IM in TIBA engine, one National Engine of Iran, obtained from MEGA motor Company. The... 

    Three-Dimensional Numerical Modeling of Oil Reservoir Stimulation by Hydraulic Fracturing Technique Using EFG Mesh-less Method and Considering Two-Phase Fluid Flow

    , Ph.D. Dissertation Sharif University of Technology Samimi, Soodeh (Author) ; Pak, Ali (Supervisor)
    Abstract
    Hydraulic fracturing is a process during which a viscous fluid under relatively high pressure and flow rate is injected into a wellbore to induce and propagate a system of cracks in the ground.Hydraulic fracturing of underground formations has been widely used in different fields of
    engineering, such as petroleum engineering, geotechnical engineering, environmental engineering, mining engineering,and so on.Despite the technological advances in the techniques of in-situ hydraulic fracturing, the industry lacks a realistic and reliable numerical model to design cost - effective and efficient hydraulic fracturing treatment.This is due to the complex interaction and strong coupling between... 

    Numerical Fluid–Structure Interaction and non-Newtonian Simulation of Blood Flow in a Compliant Carotid Bifurcation

    , M.Sc. Thesis Sharif University of Technology Toloui, Mostafa (Author) ; Firoozabadi, Bahar (Supervisor) ; Saidi, Mohammad Saeid (Co-Advisor)
    Abstract
    Researchers have done a lot of studies about the use of CFS in blood flow modeling in order to improve the supplementary devices or find mechanical factors which cause artery to be diseased. Blood is a complex rheological fluid, blood flow is a pulastile flow, and blood flow field interacts with the deformable vessel wall. Thus, blood flow modeling like other biological phenomena has its own complexities such as anisotropy, vsicoelasticity, and nonlinearity in stress-strain relationship of vessel wall. To explore the role of hemodynamics in the initiation and progression of stenosis in carotid artery bifurcation, a 3D Computational Fluid Dynamics (CFD) technique is applied. The effect of... 

    Theoretical and Experimental Investigation of Particle Size Distribution in a Tapered Fluidized Bed for TiO2

    , Ph.D. Dissertation Sharif University of Technology Rasteh, Mojtaba (Author) ; Farhadi, Fathollah (Supervisor) ; Bahramian, Alireza (Co-Advisor)
    Abstract
    This dissertation discusses the development of dimensionless correlations for predicting hydrodynamic parameters and CFD simulation of gas-solid two phase flow in conical fluidized beds. This research mainly focuses on the impact of particle size distribution on hydrodynamic parameters. The first section describes the experiments that were carried out with a number of gas–solid systems in a conical column to study certain important characteristics of the fluidized bed. Generalized empirical correlations, based on dimensionless analysis, have been developed in order to predict minimum fluidization velocity, minimum velocity of full fluidization, maximum pressure drop and bed expansion ratios.... 

    Efficiency Evaluation of R-K Model for Modeling Two-phase Flow in Porous Media Using Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Mohammad (Author) ; Pak, Ali (Supervisor)
    Abstract
    Flows in porous media exist in many practical and research fields including water flow in soil, transport of pollution in soil, oil recovery engineering, and etc. Studying the multi-phase flows seems being too complex due to the interactions between fluids or between fluid and media in the porous media, wetting tendency of fluids, intrinsic permeability of the porous media, tortuosity of the flow’s path and etc. Hence, the field and laboratory studies of multi-phase flows is difficult, if not impossible. While numerical methods can handle many of these complexities, many of them are unable to simulate the micro-scale flows. On contrary, Lattice Boltzmann has no such shortcomings and even is... 

    Fully Coupled Numerical Modeling Of CO2 Sequestration in Deep Underground Formations with EFG Method

    , M.Sc. Thesis Sharif University of Technology Roghangar, Khatereh (Author) ; Pak, Ali (Supervisor)
    Abstract
    Greenhouse gas emissions into the atmosphere have multiplied with the increase in fossil fuel consumption, which directly affects global warming. Global warming has other undesirable consequences such as rising sea water level and declining snow cover. To reduce greenhouse gases in the atmosphere, researchers have studied various ways, one of which is carbon dioxide injection into underground formations, which has a significant effect on reducing the amount of these gases in the atmosphere. Existence of high volume underground reservoirs with suitable conditions for gas injection to prevent gas escape has made it a widely used and effective method. Despite many advantages of this method, it... 

    Numerical Modeling of Fluid Flow and Proppant Transport in Hydraulic Fracture Using Extended Finite Element Method

    , Ph.D. Dissertation Sharif University of Technology Hosseini, Navid (Author) ; Khoei, Amir Reza (Supervisor) ; Shad, Saeed (Co-Supervisor)
    Abstract
    Transport phenomena in porous media play important role in many areas of subsurface hydrology, geo-physics, environment, energy and petroleum. The work in the field of numerical modeling of fractured porous media is yet an open area of research. The classic finite element method (FEM) has some limitations in modeling of discontinuities like fracture. FEM mesh should conform with the geometry of the fracture. Presence of fracture imposes discontinuity in pressure field of fluid phases and displacement field of solid phase (rock). To represent the fractures, the extended finite element method (X-FEM) can be used in which the standard finite element approximation of the field variables is... 

    Pore-scale Simulation of the Effect of Fluid/fluid and Rock/fluid Interactions During Water Injection on the Residual Oil Distribution and Hysteresis

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Nejad, Mehdi (Author) ; Fatemi, Mobeen (Supervisor)
    Abstract
    Low salinity water injection is one of the new and important methods of enhancing oil recovery. Experimental studies show the fact that the change in water salinity affects the interfacial properties of water-oil (Fluid-fluid interactions) And the change in wettability that represents the porous media (Rock-fluid interactions) is effective for Oil-recovery. Recently, progress have been made in simulating the process of injecting low-salinity water into the field or core dimensions. However, the simulation of the low salinity water injection process has been much less studied considering the fluid / fluid and fluid / rock interactions at the pore scale. The purpose of this study is to...