Loading...
Search for: field-emission-microscopes
0.007 seconds
Total 170 records

    Surface layer nanocrystallization of carbon steels subjected to severe shot peening: Analysis and optimization

    , Article Materials Characterization ; Volume 157 , 2019 ; 10445803 (ISSN) Maleki, E ; Unal, O ; Reza Kashyzadeh, K ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    Severe shot peening (SSP) process is widely used for surface nanocrysallization of a bulk material that demonstrates excellent mechanical properties compared with its coarse-grained equivalents. In this study, a plastically deformed surface was produced with nanostructured grains on different materials of AISI 1045, 1050, and 1060 carbon steels by means of SSP. Shot peening was applied with a wide range of Almen intensities and coverages. Optical microscopy, scanning electron microscopy, field emission scanning electron microscopy, high resolution transmission electron microscope observations, and X-ray diffraction analysis were employed to analyze the mechanism of grain refinement... 

    Effect of oxidizing atmosphere on the surface of titanium dental implant material

    , Article Journal of Bionic Engineering ; Volume 16, Issue 6 , 2019 , Pages 1052-1060 ; 16726529 (ISSN) Khodaei, M ; Alizadeh, A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer  2019
    Abstract
    Direct oxidation is a simple and effective method for titanium surface treatment. In this research, a titanium sample was directly oxidized at the high temperature in two different atmospheres, air and pure oxygen, to obtain better atmosphere for titanium surface treatment. The results of the Raman spectroscopy indicated that in both atmospheres, the rutile bioactive phase (TiO2) has been formed on the titanium surface. The results of X-ray diffraction (XRD) also revealed that the surface of oxygen-treated sample was composed of the rutile phase and titanium monoxide (TiO), while at the surface of the air-treated sample, the rutile phase and titanium dioxide had been formed. Further, the... 

    Self-healing epoxy nanocomposite coatings based on dual-encapsulation of nano-carbon hollow spheres with film-forming resin and curing agent

    , Article Composites Part B: Engineering ; Volume 175 , 2019 ; 13598368 (ISSN) Haddadi, S. A ; Ramazani S.A., A ; Mahdavian, M ; Taheri, P ; Mol, J. M. C ; Gonzalez Garcia, Y ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The ability of an active protective organic coating to restore its protection functionality in case of a coating defect is of pivotal importance to ensure durable performance under demanding corrosive conditions. In this paper, a self-healing epoxy system is fabricated by separate encapsulation of epoxy and polyamine in carbon hollow spheres (CHSs) and the autonomous healing performance of the system applied on mild steel is investigated. CHSs were synthesized via a silica templating method using carbonization of polysaccharide shells formed on the surface of silica templates. Consequently, epoxy and polyamine were loaded in separate capsules by dispersion of CHSs into the dilute solutions... 

    Synthesis, characterization and catalytic activity of supported vanadium Schiff base complex as a magnetically recoverable nanocatalyst in epoxidation of alkenes and oxidation of sulfides

    , Article Journal of Organometallic Chemistry ; Volume 897 , 2019 , Pages 200-206 ; 0022328X (ISSN) Bagherzadeh, M ; Bahjati, M ; Mortazavi Manesh, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A new magnetically separable nanocatalyst was successfully synthesized by immobilizing of vanadyl acetylacetonate complex, [VO(acac)2], onto silica coated magnetite nanoparticles previously functionalized with 3-aminopropyltriethoxysilane (3-APTES) and reacted by 5-bromosalicylaldehyde to form Schiff base moiety. The obtained nanocatalyst was characterized by elemental analysis (CHN), FT-IR spectroscopy, Powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), inductively coupled plasma optical emission spectrometry (ICP-OES) and thermogravimetric analysis (TGA). Eventually, the resulting nanoparticles were used as catalyst for epoxidation of alkenes and... 

    How does cobalt phosphate modify the structure of TiO2 nanotube array photoanodes for solar water splitting?

    , Article Catalysis Today ; Volume 335 , 2019 , Pages 306-311 ; 09205861 (ISSN) Maghsoumi, A ; Naseri, N ; Calloni, A ; Bussetti, G ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    TiO2 nanotube arrays (TNA) have been modified by cobalt phosphate (CoPi) through potentiostatic electrodeposition method. Different samples have been prepared by changing the loaded CoPi through the deposition time from 10 to 960 min. Formed catalytic materials have been characterized by different methods. Although charge transfer resistance of the CoPi/TNA photoanodes have been decreased from 5.5 to 4.0 kΩ by increasing the deposition time from 5 to 60 min, the maximum photoresponse was obtained for 10 min CoPi deposition leading to 24% more photocurrent compare to bare TNA which proposed optimum value for cobalt phosphate decoration. Based on field emission scanning electron microscopy... 

    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA detection based on tellurium doped ZnO nanowires

    , Article Applied Physics A: Materials Science and Processing ; Volume 125, Issue 9 , 2019 ; 09478396 (ISSN) Khosravi Nejad, F ; Teimouri, M ; Jafari Marandi, S ; Shariati, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA (HPV DNA) detection based on tellurium doped ZnO nanowires was fabricated. The NWs were grown by hybrid thin film oxidation in the physical vapor deposition (PVD) mechanism. The morphology characterization of the synthesized NWs was performed by field emission scanning electron microscopy (FESEM) and the images demonstrated that the diameter and the length of the materialized NWs were around 50 nm and several micrometers, respectively. The high-resolution transmission electron microscopy (HRTEM) image indicated that the fabricated NWs were crystalline and their phase characterization was validated by... 

    Preparation of sulfur micro-particles suitable for lithium sulfur batteries using sulfur vapor deposition

    , Article Materials Research Express ; Volume 6, Issue 10 , 2019 ; 20531591 (ISSN) Hakimi, M ; Borzabadi Farahani, A ; Sanaee, Z ; Ghasemi, S ; Mohajerzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    The current paper reports the deposition of sulfur micro-particles using sulfur vapor deposition (SVD). Sulfur particles in size of 5 to 45 μm were deposited on a stainless steel substrate to be used as the cathode with porous structure in lithium sulfur (Li-S) batteries. Mass loading of about 0.5 mg cm-2 was obtained from this pure sulfur cathode. The structure of this binder-free cathode was characterized by field emission scanning electron microscopy (FESEM), x-ray spectroscopy (EDS), and x-ray diffraction (XRD). The electrochemical performance of the battery with two different organic liquid ether- and carbonate-based electrolytes was investigated and the results demonstrated that the... 

    Improved electrochemical performance of plasma electrolytic oxidation coating on titanium in simulated body fluid

    , Article Journal of Materials Engineering and Performance ; Volume 28, Issue 7 , 2019 , Pages 4120-4127 ; 10599495 (ISSN) Ahmadnia, S ; Aliasghari, S ; Ghorbani, M ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    The effect of plasma electrolytic oxidation (PEO) pre-treatments on corrosion behavior of titanium in simulated body fluid (SBF) is investigated. Three pre-treatments are compared, using silicate, calcium phosphate and mixed silicate and calcium phosphate (1:1) electrolytes, respectively. The resultant coatings in different compositions and morphologies were examined by high-resolution field emission scanning electron microscopy equipped with energy-dispersive spectrometer and x-ray diffraction. The PEO-treated specimens revealed distribution of coating species, mainly the titanium-rich inner coating region. However, findings show highly localized variations in composition within their... 

    Synergistic effect of Ni-based metal organic framework with graphene for enhanced electrochemical performance of supercapacitors

    , Article Journal of Materials Science: Materials in Electronics ; Volume 30, Issue 13 , 2019 , Pages 12351-12363 ; 09574522 (ISSN) Azadfalah, M ; Sedghi, A ; Hosseini, H ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Developing advanced electrode materials with metal–organic frameworks (MOFs) has increasingly attracted attentions as an effective method for improving supercapacitors performances. However, their poor conductivity has limited their use in energy applications. In this paper, an effective strategy is presented to reduce the electric resistance of MOFs by the in situ synthesis of Ni-based MOFs with graphene (Ni-MOF/graphene). The fabricated Ni-MOF/graphene composite was characterized by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), Raman spectra, Brunauer–Emmett–Teller (BET) and... 

    One step synthesis of SnS2-SnO2 nano-heterostructured as an electrode material for supercapacitor applications

    , Article Journal of Alloys and Compounds ; Volume 782 , 2019 , Pages 38-50 ; 09258388 (ISSN) Asen, P ; Haghighi, M ; Shahrokhian, S ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    SnS2-SnO2 nano-heterostructures are synthesized with two different precursors of thioacetamide (TAA) and thiourea (TU) at various solvent ratios (SR) of ethanol and water by using a facile, economical, scalable, and cost-effective solvothermal method. The obtained products have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Brunauer–Emmet–Teller (BET) techniques. It is found that different precursors and various SR values have an influence on the composition and morphologies of the prepared nanostructures, leading to variation in capacitive behavior of the fabricated electrodes.... 

    Hierarchical rutile/anatase TiO 2 nanorod/nanoflower thin film: Synthesis and characterizations

    , Article Materials Science in Semiconductor Processing ; Volume 93 , 2019 , Pages 252-259 ; 13698001 (ISSN) Daneshvar e Asl, S ; Eslami Saed, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Hierarchical TiO 2 nanorod/nanoflower thin film was synthesized on fluorine doped tin oxide glass via hydrothermal and aqueous chemistry methods. According to field emission scanning electron microscopy results, the thin film was crack-free and uniform. Primary nanorods had an average diameter of 95 nm and a length of 2 µm. They were perpendicular to the substrate owing to the TiO 2 prenucleation. Growth of the nanoflowers on the nanorods could increase both the specific surface area and roughness. X-ray diffraction and Raman spectroscopy showed that the nanorods were rutile; while the nanoflowers were anatase. Efficient electron transfer from anatase to rutile could therefore occur.... 

    Synthesis and characterization of rGO/Fe2O3 nanocomposite as an efficient supercapacitor electrode material

    , Article Journal of Materials Science: Materials in Electronics ; Volume 31, Issue 17 , 2020 , Pages 14998-15005 Abasali karaj abad, Z ; Nemati, A ; Malek Khachatourian, A ; Golmohammad, M ; Sharif University of Technology
    Springer  2020
    Abstract
    The reduced graphene oxide-Fe2O3 (rGO-Fe2O3) nanocomposites were synthesized by a facile and low-cost hydrothermal method employing rGO and Iron (III) nitrate precursors. The synthesis parameters including the reduction time and presence of reduction aid are studied. The structural and morphological studies of the nanocomposites were investigated by using Raman spectra, Fourier transform infrared spectroscopy, X-ray diffraction, and field emission scanning electron microscopy. The results indicate that Fe2O3 nanoparticles with average particle size of 25 nm are well anchored on graphene sheets and the weight percent of the nanoparticles in the nanocomposites was influenced by the reduction... 

    Design of a pseudo stir bar sorptive extraction using graphenized pencil lead as the base of the molecularly imprinted polymer for extraction of nabumetone

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 238 , 2020 Afsharipour, R ; Dadfarnia, S ; Haji Shabani, A. M ; Kazemi, E ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Molecularly imprinted polymer (MIP) was synthesized through the coprecipitation method on the graphene oxide anchored pencil lead as a substrate for the first time and applied as an efficient sorbent for pseudo stir bar sorptive extraction of nabumetone. The extracted analyte was determined by a novel spectrophotometric method based on the aggregation of silicate sol-gel stabilized silver nanoparticles in the presence of the analyte. The synthesized polymer was characterized using Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Optimization of important parameters affecting the extraction efficiency was done using central composite design whereas the... 

    Corrosion-wear behavior of AA1050/mischmetal oxides surface nanocomposite fabricated by friction stir processing

    , Article Journal of Alloys and Compounds ; Volume 832 , 2020 Alishavandi, M ; Razmjoo Khollari, M. A ; Ebadi, M ; Alishavandi, S ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, the wear and corrosion characteristics of six-pass friction stir processed (FSPed) AA1050/mischmetal oxide nanocomposite (6PPA) was compared to six-pass FSPed sample without powder (6 PA) and annealed base metal (BM). Different wear characteristics, such as weight loss, wear rate and coefficient of friction (COF) were studied. In order to evaluate the corrosion resistance of samples, immersion and cyclic polarization tests were performed. In addition, worn and corroded surfaces were investigated by field emission scanning electron microscopy (FESEM). The result of pin on disk dry sliding wear test revealed that wear resistance improved by employing FSP through finer grain... 

    In situ emulsion polymerization and characterization of PVAc nanocomposites including colloidal silica nanoparticles for wood specimens bonding

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 15 , 2020 Azamian Jazi, M ; Ramezani Saadat Abadi, A ; Haddadi, S. A ; Ghaderi, S ; Azamian, F ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Polyvinyl acetate (PVAc) nanocomposites for wood adhesives containing different amounts of colloidal silica nanoparticles (CSNs) were synthesized via in situ one-step emulsion polymerization. The adhesion strength of wood specimens bonded by PVAc nanocomposites was investigated by the tensile test. Thermal properties of PVAc nanocomposites were also characterized by differential scanning calorimetry and thermogravimetric analysis. Rheological and morphological properties of the PVAc nanocomposites were investigated using rheometric mechanical spectrometry and field emission scanning electron microscopy (FESEM), respectively. The obtaining results showed that the shear strength of PVAc... 

    Anionic and cationic pollutants degradation via TiO2 nanoleafed nanorods

    , Article Solid State Sciences ; Volume 105 , 2020 Daneshvar e Asl, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier Masson SAS  2020
    Abstract
    Hierarchical TiO2 nanoleafed nanorod thin film was successfully synthesized on the fluorine doped tin oxide glass substrate. For this purpose, the nanorods were coated on the TiO2 seeded substrate via the hydrothermal method. Then, nanoleafs were grown on the nanorods by aqueous chemistry. Field emission scanning electron microscopy, energy dispersive spectroscopy, and Raman spectroscopy were utilized for thin film characterization. The results clarified that anatase-phase nanoleafs were uniformly grown on the rutile-phase nanorods in the TiO2 coating. The photocatalytic performance of the thin film was determined by photodegradation of anionic and cationic organic pollutants, and the... 

    Effect of reactive diluent on gas separation behavior of photocurable acrylated polyurethane composite membranes

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 3 , 15 January , 2020 Molavi, H ; Shojaei, A ; Mousavi, S. A ; Ahmadi, S. A ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    In this study, the effects of the type and content of reactive diluents on the permeation/separation of carbon dioxide/nitrogen (CO2/N2) through acrylate-terminated polyurethane (APU)-acrylate/acrylic diluent (APUA) composite membranes was investigated. A series of APUs based on poly(ethylene glycol) (PEG)-1000 g mol−1, toluene diisocyanate, and 2-hydroxyethyl methacrylate was synthesized and then diluted with several reactive diluents. The results obtained from differential scanning calorimetry (DSC) and Fourier transform infrared analyses showed that the microphase interference of hard and soft segments increased with increasing reactive diluent content. Furthermore, with increasing alkene... 

    A novel magnetic polyacrylonotrile-based palladium core−shell complex: a highly efficient catalyst for synthesis of Diaryl ethers

    , Article Journal of Organometallic Chemistry ; Volume 916 , 14 June , 2020 Matloubi Moghaddam, F ; Jarahiyan, A ; Eslami, M ; Pourjavadi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The present article describes the synthesis of a new magnetic polyacrylonitrile-based Pd catalyst involving polyacrylonitrile modified via 2-aminopyridine as an efficient support to immobilize Pd nanoparticles. The simple reusability, easy separation and high stability of this Pd complex make it an excellent candidate to generate a C–O bond via Ph-X activation which is a really important subject in achieving biologically active compounds. It is worth to note access to good and high yields as well as broad substrate scope have resulted from superior reactivity of this catalyst complex. Furthermore, the structure of the magnetic polyacrylonitrile-based heterogeneous catalyst was characterized... 

    Adsorption performance of UiO-66 towards organic dyes: effect of activation conditions

    , Article Journal of Molecular Liquids ; 2020 Vaghar Mousavi, D ; Ahmadipouya, S ; Shokrgozar, A ; Molavi, H ; Rezakazemi, M ; Ahmadijokani, F ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The Zr-based metal-organic framework (MOF, UiO-66) was synthesized solvothermally. The synthesized UiO-66 was activated using different solvents (acetone, chloroform, and ethanol) via two activation methods of centrifugation and Soxhlet extraction over different periods (1–10 days). The crystalline structure and morphology of the synthesized UiO-66s were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and field-emission scanning electron microscopy (FESEM) techniques. The adsorption behaviors of the synthesized UiO-66s were then investigated by selecting anionic methyl red (MR) and cationic methylene blue (MB) as the model dyes. It was found that a change in... 

    Development of a triple-cation Ruddlesden–Popper perovskite structure with various morphologies for solar cell applications

    , Article Journal of Materials Science: Materials in Electronics ; Volume 31, Issue 4 , January , 2020 , Pages 2766-2776 Mirhosseini, M ; Bakhshayesh, A. M ; Khosroshahi, R ; Taghavinia, N ; Abdizadeh, H ; Sharif University of Technology
    Springer  2020
    Abstract
    The present research sheds new light on the development of a triple-cation quasi-two-dimensional (2D) perovskite family with the general formula of (S1−xS′x)2[Cs0.05(FA1−xMAx)0.95]3Pb4(I1−xBrx)13, in which two spacers, namely 5-ammonium valeric acid iodide (S) and tetra-n-octylammonium bromide (S′) were simultaneously incorporated. Morphology, crystal structure, optical properties, photovoltaic performance, and internal resistances of such compound were systemically studied in comparison with an analogous single-cation 2D counterpart (i.e. (S)2(FA)3Pb4I13) as a reference. X-ray diffraction set forth that the films deposited based upon these compounds had a 2D perovskite crystal structure...