Loading...
Search for: droplet
0.01 seconds
Total 158 records

    Numerical investigation of droplets breakup in a microfluidic T-junction

    , Article Applied Mechanics and Materials ; Volume 110-116 , 2012 , Pages 3269-3277 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Bedram, A ; Moosavi, A ; Int. Assoc. Comput. Sci. Inf. Technol. (IACSIT) ; Sharif University of Technology
    2012
    Abstract
    A Volume of Fluid (VOF) method is used to stdy the breakup of droplets in T-junction geometries. Symmetric T-junctions, which are used to produce equal size droplets and have many applications in pharmacy and chemical industries, are considered. Two important factors namely "breakup time" and "breakup length" that can improve the performance of these systems have been introduced. In addition a novel system which consists of an asymmetric T-junction is proposed to produce unequal size droplets. The effects of the channel width ratio and the capillary number on the size and length of the generated droplets and also the time of the generation have been studied and discussed. For simulation the... 

    The effects of different jet velocities and axial misalignment on the liquid sheet of two colliding jets

    , Article Chemical Engineering Science ; Volume 206 , 2019 , Pages 235-248 ; 00092509 (ISSN) Kashanj, S ; Kebriaee, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This experimental study investigated the patterns and characteristics of the liquid sheet formed by two axial misaligned colliding jets and two colliding jets with different velocities. The tests were limited to the low Reynolds number region, 100

    Electrowetting-induced droplet jumping over topographically structured surfaces

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Merdasi, A ; Moosavi, A ; Shafii, M. B ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    We analyze the process of electrowetting-induced jumping of droplets away from a substrate with a geometric heterogeneity in the form of a cone and compare the results with those of a flat substrate in different wettabilities and hydrophobicities. Our results reveal that the droplet dynamics can be enhanced through applying a topographic heterogeneity. However, increasing the height of the cones does not always provide a better condition for the jumping and there is an optimum value for the height of the cones. The enhancement is due to the fact that more liquid flowing affects the pressure gradient within the droplet leading to a higher jumping velocity. It is shown that for the flat... 

    Axis-switching and breakup of rectangular liquid jets

    , Article International Journal of Multiphase Flow ; Volume 126 , May , 2020 Morad, M. R ; Nasiri, M ; Amini, G ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The behavior of low-speed liquid jets emerging from rectangular orifices into a quiescent air is studied numerically. After ejection, the rectangular cross-section transforms into an elliptical form along the jet and while axis-switching includes elliptical cross-sections only, the rectangular shape never establishes again. The optimum wavenumber, corresponding to the most dominant wave, is found to be greater in orifices with higher aspect ratios and, as a result, breakup length of the jet will be shorter. The breakup length decreases exponentially with the initial amplitude of disturbances. Moreover, it is observed that the form of final breakup leads to elimination of the satellite... 

    Investigating the effect of reagent parameters on the efficiency of cell lysis within droplets

    , Article Physics of Fluids ; Volume 32, Issue 6 , 2020 Shamloo, A ; Hassani Gangaraj, M ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Cell lysis is an essential primary step in cell assays. In the process of cell lysis, the cell membrane is destroyed and the substances inside the cell are extracted. By utilizing a droplet-based microfluidic platform for cell lysis, the mixer unit that is required for mixing lysis reagents with the cells can be excluded, and thus, the complexity of the fabrication process is reduced. In addition, lysing the cells within the droplets will prevent the cells from exposure to the channel walls, and as a result, cleanliness of the samples and the device is maintained. In this study, cell lysis within the droplets and the parameters affecting the efficiency of this process are investigated using... 

    Ferrofluid droplet breakup process and neck evolution under steady and pulse-width modulated magnetic fields

    , Article Journal of Molecular Liquids ; Volume 343 , 2021 ; 01677322 (ISSN) Bijarchi, M.A ; Favakeh, A ; Mohammadi, K ; Akbari, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Numerous applications in engineering and biotechnology have attracted the attention of many researchers to the analysis of underlying physical phenomena during the droplet pinch-off. In this study, the neck evolution during the formation of a ferrofluid droplet from a capillary is investigated under two types of magnetic field for a drop-on-demand system. The two types are steady and Pulse-Width Modulated (PWM) magnetic fields. First, under steady magnetic field, the necking process is studied for different values of magnetic Bond number and various angles between magnetic coil centerline and gravity. Subsequently, self-similar behavior in the vicinity of the detachment moment is observed.... 

    Experimental Investigation of Mass Transfer by Droplet Using Image Processing

    , M.Sc. Thesis Sharif University of Technology Babak, Pirooz Hashemi (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein ($item.subfieldsMap.e)
    Abstract
    Wide and varied aspects of droplet motion due to its increasing application in various fields has attracted much attention. Analysis of mass transfer from the liquid drop into the other fluid, such as complex and intriguing problems in fluid mechanics, which is very important. Many experimental and numerical studies have been carried out in this case that the evelopment of laboratory equipment and software, are rapidly growing.
    In this study, given the importance of this issue, experimental study on mass transfer in fluid systems solution droplet liquid - liquid extraction, have been considered. Different methods have been discussed to date. In the present study, using image processing... 

    Study of the Effect of Presence of Nano- Particles on the Mass Transfer and Hydrodynamics of Drops

    , M.Sc. Thesis Sharif University of Technology Nozari, Ali (Author) ; Bastani, Daruoosh (Supervisor) ; Goodarznia, Iraj (Supervisor)
    Abstract
    Regarding to the effect of nanoparticles on mass transfer and hydrodynamics characteristics, limited number of studiesavailableinthe literature.In this work, mass transfer performanceand hydrodynamic characteristics nanofluidshavebeeninvestigated in the liquid−liquid extraction process. The chemical system of toluene-acetic acid-water was used, and two Extraction columnswith diameter of 10cm and height of 55cm and 6 cm were designed. The drops were organic nanofluids containing silica nano-particles and carbon nano-tubes.Synthesized silica nanoparticles by sol-gel methods, were modified with Triethoxyoctylsilane and Polydimethylsiloxane as well as Carbon nano-tubes were modified with dodecyl... 

    Hydrodynamic Investigation of Large Drops and Their Breakage In Liquid Liquid Packed Beds

    , M.Sc. Thesis Sharif University of Technology Davari, Susan (Author) ; Safekordi, Ali Akbar (Supervisor)
    Abstract
    packed columns are important in liquid-liquid extraction processes. In most studies, at first, drops are broken to small drops as much as possible and then they contact with packings. But, because of different reasons drops during their moving up coalescence together. So far, there is not serious investigation about hydrodynamics of these large drops and their breakage in packed columns. Thus, breakage of two different sizes of drops while collision to 3 different height of 4 different type of packings with two volumetric flow rates and in 2 cases of straight collision of drops to bed and collision to support plate has been investigated. Then size distribution of produced drops throughout... 

    The Passive Design and Development of Digital Microfluidic Dynamic Memor

    , M.Sc. Thesis Sharif University of Technology Aminizadeh, Javad (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Microfluidics with the ability to control Nano-to-Pico meter volumes have caused the revolution in the systems of analytical biology and chemistry. However, the most Lab-On-Chip technologies (LOCs) depend on external control elements, so a lab is required to operate a chip. Bubble or drop logic through the bubble (drop) can control the flow internally and intrinsically digitally without utilizing of off-chip or moving components. Non-linearity is applied by using mutual drop-drop' effects on reversible linear flow in low Reynolds. for the proper exploitation of microfluidic systems, It is necessary to control droplet generation systems in one chip appropriately. The most crucial part of the... 

    Simulation of a falling droplet in a vertical channel with rectangular obstacles

    , Article European Journal of Mechanics, B/Fluids ; Volume 68 , March-April , 2018 , Pages 108-117 ; 09977546 (ISSN) Merdasi, A ; Ebrahimi, S ; Moosavi, A ; Shafii, M. B ; Kowsary, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Droplet microfluidic systems have attracted a large amount of research due to their numerous applications in biomedical micro-devices and drug discovery/delivery platforms. One of the most important problems in such systems is to investigate deformation, coalescence, and breakup of droplets within the channel. The present study demonstrates numerical simulation of a falling droplet subject to gravitational force in a channel with embedded rectangular obstacles. The lattice Boltzmann method incorporated using He–Chen–Zhang method for two phase flow is employed. Two rectangular obstacles with inverse aspect ratios are introduced to investigate the mechanism of breakup and deformation of the... 

    Ferrofluid droplet manipulation using an adjustable alternating magnetic field

    , Article Sensors and Actuators, A: Physical ; Volume 301 , 2020 Bijarchi, M. A ; Favakeh, A ; Sedighi, E ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Magnetically actuated droplet manipulation offers a promising tool for biomedical and engineering applications, such as drug delivery, biochemistry, sample handling in lab-on-chip devices and tissue engineering. In this study, characteristics of an adjustable alternating magnetic field generated by a magnetic coil for droplet manipulation was investigated which enables more control on droplet transport, and it can be considered as a suitable alternative for moving magnets or an array of micro-coils. By adjusting the magnetic flux density, the duty cycle and applied magnetic frequency, the manipulation of water-based ferrofluid droplets with a bio-compatible surfactant for different volumes... 

    An interface–particle interaction approach for evaluation of the co-encapsulation efficiency of cells in a flow-focusing droplet generator

    , Article Sensors (Switzerland) ; Volume 20, Issue 13 , 2020 , Pages 1-17 Yaghoobi, M ; Saidi, M. S ; Ghadami, S ; Kashaninejad, N ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Droplet-based microfluidics offers significant advantages, such as high throughput and scalability, making platforms based on this technology ideal candidates for point-of-care (POC) testing and clinical diagnosis. However, the efficiency of co-encapsulation in droplets is suboptimal, limiting the applicability of such platforms for the biosensing applications. The homogeneity of the bioanalytes in the droplets is an unsolved problem. While there is extensive literature on the experimental setups and active methods used to increase the efficiency of such platforms, passive techniques have received less attention, and their fundamentals have not been fully explored. Here, we develop a novel... 

    Flow regime mapping for a two-phase system of aqueous alginate and water droplets in T-junction geometry

    , Article Physics of Fluids ; Volume 33, Issue 7 , 2021 ; 10706631 (ISSN) Mehraji, S ; Saadatmand, M ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Microfluidic systems are an interesting topic for investigation due to their wide-spreading applications. Nowadays, polymeric solutions are used mainly for the generation of microparticles in biomedical engineering, food, and pharmaceutical industries. Droplet-based microfluidic devices have proposed an extensive interest in many applications such as chemical/biological/nanomaterial preparation to understand deeply the droplet size and formation in microchannels. However, numerous experimental and numerical studies have been done for oil-water combination, polymeric solutions behavior in the presence of oil has not been investigated widely. Therefore, it is important to understand the... 

    Droplet-based microfluidics in biomedical applications

    , Article Biofabrication ; Volume 14, Issue 2 , 2022 ; 17585082 (ISSN) Amirifar, L ; Besanjideh, M ; Nasiri, R ; Shamloo, A ; Nasrollahi, F ; De Barros, N. R ; Davoodi, E ; Erdem, A ; Mahmoodi, M ; Hosseini, V ; Montazerian, H ; Jahangiry, J ; Darabi, M.A ; Haghniaz, R ; Dokmeci, M.R ; Annabi, N ; Ahadian, S ; Khademhosseini, A ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e. passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications... 

    Numerical simulation of vortex engine flow field: One phase and two phases

    , Article Journal of Thermal Science ; Volume 18, Issue 3 , 2009 , Pages 226-234 ; 10032169 (ISSN) Najafi, A. F ; Saemi, S. D ; Saidi, M. H ; Sharif University of Technology
    2009
    Abstract
    Aiming at improving efficiency in combustion systems, the study on droplet behavior and its trajectory is of crucial importance. Vortex engine is a kind of internal combustion engine which uses swirl flow to achieve higher combustion efficiency. One of the important advantages of designing vortex engine is to reduce the temperature of walls by confining the combustion products in the inner vortex. The scopes of this investigation are to study vortex engine flow field as well as effective parameters on fuel droplet behavior such as droplet diameter, droplet initial velocity and inlet velocity of the flow field. The flow field is simulated using Reynolds Stress Transport Model (RSM). The... 

    Experimental investigation of rheological and morphological properties of water in crude oil emulsions stabilized by a lipophilic surfactant

    , Article Journal of Dispersion Science and Technology ; Volume 34, Issue 3 , Feb , 2013 , Pages 356-368 ; 01932691 (ISSN) Sadeghi, M. B ; Ramazani, S. A. A ; Taghikhani, V ; Ghotbi, C ; Sharif University of Technology
    2013
    Abstract
    Rheological behavior of two crude oils and their surfactant-stabilized emulsions with initial droplet sizes ranging from 0.5 to 75 μm were investigated at various temperatures under steady and dynamic shear testing conditions. In order to evaluate the morphology and Stability of emulsions, microscopic analysis was carried out over three months and average diameter and size distribution of dispersed droplets were determined. The water content and surfactant concentration ranged from 10 to 60% vol/vol and 0.1 to 10% wt/vol, respectively. The results indicated that the rheological properties and the physical structure and stability of emulsions were significantly influenced by the water content... 

    Simulation of Droplet Formation and Detachment, Using Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Haghshenas, Majid (Author) ; Taeibi Rahni, Mohammad (Supervisor)
    Abstract
    The phenomena of formation and detachment of droplets are of fundamental importance in studying two-phase flows, such as spraying processes, ink jet printing, emulosin, etc. Droplets are formed under the effects of surface tension forces. After formation, forces like gravity detach the droplet from the rest of the fluid. Recent advancements in computational fluid dynamics and computers have made it feasible to have advancement in simulation of complex flows, including two-phase phenomenon. On the other hand, the lattice Boltzmann method (LBM) has been developed into an alternative and promising numerical scheme for simulating multi-component fluid flows.
    In this project, formation and... 

    Analytical and Numerical Study of Dynamics of Wettability Driven Droplets in Smooth And Corrugated Channels

    , M.Sc. Thesis Sharif University of Technology Esmaili, Ehsan (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    We studied dynamics of droplets inside channels under surface forces created by chemicalsteps on the channel walls. A multi-component Shan-Chen lattice Boltzmann method isused for this purpose.The effects of parameters such as the channel height, viscosity anddensity ratios on the results were investigated for homogeneous and grooved substrates. Alsoan analytical solution was developed for droplets under chemical heterogeneities in channels with smooth surfaces. The solution considers a general condition, namely, asymmetry of the contact angles on the top and bottom walls, the viscosity of the gas as the second fluid and the effect of the channel height. Then using Shan-Chen lattice... 

    Topological Defects in Confined Nematics by Planar Anchoring

    , M.Sc. Thesis Sharif University of Technology Seyed Nejad, Reza (Author) ; Ejtehadi, Mohammad Reza (Supervisor) ; Mozaffari, Mohammad Reza (Supervisor)
    Abstract
    Confining nematic liquid crystal between two curved boundary conditions while the nematic molecules have a degenerate planar anchoring leads to complex and beautiful textures of molecular disparagement(defect) in the bulk and on the surfaces. Such the liquid crystal shells are made with double-emulsion techniques in microfluidic devices have provided applications for micro-scale colloidal linkers.In this work, we have numerically minimized the elastic energy in one-constant approximation in present of Fournier’s degenerate surface potential with finite element method. The nematic shell is confined between two spherical surfaces that we have studied the final energies and their related...