Loading...
Search for: distributed-system
0.018 seconds
Total 298 records

    Optimal allocation of PMUs in active distribution network considering reliability of state estimation results

    , Article IET Generation, Transmission and Distribution ; Volume 14, Issue 18 , 2020 , Pages 3641-3651 Gholami, M ; Abbaspour, A ; Fattaheian Dehkordi, S ; Lehtonen, M ; Moeini Aghtaie, M ; Fotuhi, M ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    Due to the lack of data in active distribution networks, employing new accurate measurement devices like phasor measurement units (PMUs) and micro-PMUs with a high reporting rate becomes an inevitable choice for the future vision of distribution systems. As a result, different algorithms have been presented to optimally place PMUs cost-effectively based on the estimation errors of the distribution state estimation (DSE) results. However, any component failure in measurement devices or communication links between sending ends and monitoring system of the distribution management system can significantly affect the DSE results. In response, this study introduces the reliability of satisfying... 

    Detecting the location of short-circuit faults in active distribution network using pmu-based state estimation

    , Article IEEE Transactions on Smart Grid ; Volume 11, Issue 2 , 2020 , Pages 1396-1406 Gholami, M ; Abbaspour, A ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    With the rapid advancement of phasor measurement units (PMUs) technology, system operators in different level of power systems have access to new and abundant measurements. Taking into account these measurements in active distribution systems (ADNs), a new algorithm for short-circuit fault detection and identification based on state estimation (SE) is introduced in this paper. In this regard, as the first step, traditional SE process is revised to be compatible with fault conditions. Then, a fault location algorithm (FLA) based on the revised SE (RDSSE) is presented which attends to detect the location of fault after diagnosing faulted zone. For this purpose, current and voltage... 

    Joint expansion planning studies of EV parking lots placement and distribution network

    , Article IEEE Transactions on Industrial Informatics ; Volume 16, Issue 10 , October , 2020 , Pages 6455-6465 Mozaffari, M ; Askarian Abyaneh, H ; Jooshaki, M ; Moeini Aghtaie, M ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Long-term distribution network planning (DNP) is considered as one of the most challenging issues for distribution network operators (DNOs). By increasing EVs in cities, it has appeared some new players such as electric vehicles (EVs) owners and electric vehicle parking lots (EVPLs) owners for DNP. In this article, we conduct a new study on the coupled dynamic expansion problem of EVPLs placement and distribution networks. To reach this goal, at first, EVs driving and charging/discharging behavior as some influential factors is modeled using an efficient probabilistic algorithm. An analytical model is then introduced to estimate the number of EVs in EVPLs at different times. To find out the... 

    Energy storage planning for enhanced resilience of power distribution networks against earthquakes

    , Article IEEE Transactions on Sustainable Energy ; Volume 11, Issue 2 , 2020 , Pages 795-806 Nazemi, M ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Dehghanian, P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Energy infrastructures are perceived continuously vulnerable to a range of high-impact low-probability (HILP) incidents - e.g., earthquakes, tsunamis, floods, windstorms, etc. - the resilience to which is highly on demand. Specifically suited to battery energy storage system (BESS) solutions, this paper presents a new resilience-driven framework for hardening power distribution systems against earthquakes. The concept of fragility curve is applied to characterize an earthquake hazard, assess its impact on power distribution systems, and estimate the unavailability of the network elements when exposed to extreme earthquakes. A new metric is defined to quantify the network resilience taking... 

    Anomaly detection in the distribution grid: a nonparametric approach

    , Article SEST 2020 - 3rd International Conference on Smart Energy Systems and Technologies, 7 September 2020 through 9 September 2020 ; 2020 Mohammadpourfard, M ; Amiri, K ; Mohammadi Ivatloo, B ; Anvari Moghaddam, A ; Ebrahimnejad Shalmani, M ; Arjmand, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Owing to the development of smart grids technologies, including renewable energy resources and integrated demand response, the traditional distribution network undergoes systemic improvements and has become an active system. To meet such changes in technology, the smart distribution grid is highly dependent on communication infrastructures. Although this strong reliance can make the distribution network susceptible to cyber threats, there has been inadequate attention to the distribution network cyber-security. An intruder can disrupt communication and effectively target the distribution management system core functions, leaving the distribution grid susceptible to loss of stability... 

    Linear formulations for topology-variable-based distribution system reliability assessment considering switching interruptions

    , Article IEEE Transactions on Smart Grid ; Volume 11, Issue 5 , May , 2020 , Pages 4032-4043 Jooshaki, M ; Abbaspour, A ; Fotuhi Firuzabad, M ; Muñoz Delgado, G ; Contreras, J ; Lehtonen, M ; Arroyo, J. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Continuity of supply plays a significant role in modern distribution system planning and operational studies. Accordingly, various techniques have been developed for reliability assessment of distribution networks. However, owing to the complexities and restrictions of these methods, many researchers have resorted to several heuristic optimization algorithms for solving reliability-constrained optimization problems. Therefore, solution quality and convergence to global optimality cannot be guaranteed. Aiming to address this issue, two salient mathematical models are introduced in this paper for topology-variable-based reliability evaluation of both radial and radially-operated meshed... 

    A model for stochastic planning of distribution network and autonomous DG units

    , Article IEEE Transactions on Industrial Informatics ; Volume 16, Issue 6 , August , 2020 , Pages 3685-3696 Jooshaki, M ; Farzin, H ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    This article presents a mixed-integer linear stochastic model for the optimal expansion planning of electricity distribution networks and distributed generation (DG) units. In the proposed framework, autonomous DG units are aggregated and modeled using the well-known energy hub concept. In this model, the uncertainties of heat and electricity demand as well as renewable generation are represented using various scenarios. Although this is a standard technique to capture the uncertainties, it drastically increases the dimensions of this optimization problem and makes it practically intractable. In order to address this issue, a novel iterative method is developed in this article to enhance the... 

    Reliability-oriented electricity distribution system switch and tie line optimization

    , Article IEEE Access ; Volume 8 , July , 2020 , Pages 130967-130978 Jooshaki, M ; Karimi Arpanahi, S ; Lehtonen, M ; Millar, R. J ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In the past decade, enhancing the reliability of distribution networks by means of optimal switch placement has attracted much attention. In the case of failures in a distribution feeder, such disconnect switches will isolate the faulted section, and the customers downstream of the faulted point can be supplied by neighboring feeders through tie lines. Nevertheless, such reserve branches not only might experience failures themselves but also may not even exist prior to the switch placement. Accordingly, this paper presents a mathematical-programming-based model for the concurrent placement of disconnect switches and tie lines in the distribution networks to enhance the service reliability,... 

    Electricity distribution system switch optimization under incentive reliability scheme

    , Article IEEE Access ; Volume 8 , May , 2020 , Pages 93455-93463 Jooshaki, M ; Karimi Arpanahi, S ; Lehtonen, M ; Millar, R. J ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    The judicious placement of disconnecting switches is an efficient means to enhance the reliability of distribution networks. Aiming at optimizing the investment in these switches, this paper presents a mathematical programming-based model considering the installation of remote-controlled and manual switches at various locations in the distribution network. The proposed model not only yields the optimal location and type of switches in the main feeders but also specifies the optimal type of tie switches, i.e., backup switches at the reserve connection points. Incentive reliability regulation in the form of a reward-penalty scheme is incorporated into the proposed model to take the... 

    Incorporating flexibility requirements into distribution system expansion planning studies based on regulatory policies

    , Article International Journal of Electrical Power and Energy Systems ; Volume 118 , 2020 Karimi Arpanahi, S ; Jooshaki, M ; Moeini Aghtaie, M ; Abbaspour, A ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Increasing penetration of renewable energy sources with intermittent generation calls for further flexibility requirements for efficient as well as the safe operation of power systems. Considering the significant growth of distributed energy resources in distribution systems, a promising approach to fulfill such requirements is to deploy local flexibility sources at the distribution level. Nonetheless, due to the monopoly nature of electricity distribution business, effective regulations are required to direct distribution companies toward fulfilling such goals. Accordingly, this paper aims at proposing various policies to motivate distribution companies to enhance the flexibility of their... 

    Balancing management of strategic aggregators using non-cooperative game theory

    , Article Electric Power Systems Research ; Volume 184 , 2020 Rayati, M ; Bozorg, M ; Ranjbar, A. M ; Cherkaoui, R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The aggregators are intermediary players at the distribution system level. They manage the financial transactions of resources such as micro-turbines (MTs), photo-voltaic (PV) production systems, flexible demands (FDs), and must-run demands (MDs) in the energy market. Based on the regulation of many transmission system operators (TSOs) in European countries, an aggregator is obliged to be assigned to a balancing group (BG) represented by a balancing group manager (BGM). The TSO measures the energy imbalances at the BG level. Meanwhile, the BGM is responsible for the management of financial transactions between the aggregators and the TSO. The strategic aggregators can establish a common BG... 

    Hybrid AC/DC microgrids flexible reliability index by using the axiomatic design concept

    , Article IET Generation, Transmission and Distribution ; Volume 14, Issue 23 , 2020 , Pages 5456-5462 Sabouhi, H ; Doroudi, A ; Fotuhi Firuzabad, M ; Bashiri, M ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    With the capacity increase of large-scale DC renewable energy and DC loads, the reliability issues of hybrid AC/DC networks become increasingly prominent. On the other hand, a modern distribution network should also deliver power to individual customers based on their priority levels and the traditional reliability indices are not suitable for modern networks. Flexible reliability (FR) is a new concept that considers the loads' importance in the reliability evaluation of distribution grids. In this study, a novel comprehensive FR index is introduced for hybrid AC/DC networks. To determine the proposed index, power networks are modelled as a topological combination of edges and nodes. An... 

    Inverse reliability evaluation in power distribution systems

    , Article IEEE Transactions on Power Systems ; Volume 35, Issue 1 , 2020 , Pages 818-820 Sharifinia, S ; Rastegar, M ; Allahbakhshi, M ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In power distribution systems, sometimes, system reliability indices are available, where some components' reliability parameters are unknown. This letter presents the inverse reliability evaluation (IRE) problem in radial distribution systems to find unknown components' parameters from the known system reliability indices. To this end, a nonlinear system of equations is presented and solved. The solutions are analyzed in the RBTS bus 2 to verify the applicability of the proposed approach and to show the importance of the IRE problem. © 1969-2012 IEEE  

    Toward operational resilience of smart energy networks in complex infrastructures

    , Article Advances in Intelligent Systems and Computing ; Volume 1123 , 2020 , Pages 203-228 Taheri, B ; Jalilian, A ; Safdarian, A ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Smart energy systems can mitigate electric interruption costs provoked by manifold disruptive events via making efforts toward proper pre-disturbance preparation and optimal post-disturbance restoration. In this context, effective contingency management in power distribution networks calls for contemplating disparate parameters from interconnected electric and transportation systems. This chapter, while considering transportation issues in power networks’ field operations, presents a navigation system for pre-positioning resources such as field crews and reconfiguring the network to acquire a more robust configuration in advance of the imminent catastrophe. Also, after the occurrence of the... 

    Learning of gaussian processes in distributed and communication limited systems

    , Article IEEE Transactions on Pattern Analysis and Machine Intelligence ; Volume 42, Issue 8 , 2020 , Pages 1928-1941 Tavassolipour, M ; Motahari, S. A ; Manzuri Shalmani, M. T ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    It is of fundamental importance to find algorithms obtaining optimal performance for learning of statistical models in distributed and communication limited systems. Aiming at characterizing the optimal strategies, we consider learning of Gaussian Processes (GP) in distributed systems as a pivotal example. We first address a very basic problem: how many bits are required to estimate the inner-products of some Gaussian vectors across distributed machines? Using information theoretic bounds, we obtain an optimal solution for the problem which is based on vector quantization. Two suboptimal and more practical schemes are also presented as substitutes for the vector quantization scheme. In... 

    Straggler mitigation in distributed matrix multiplication: fundamental limits and optimal coding

    , Article IEEE Transactions on Information Theory ; Volume 66, Issue 3 , 2020 , Pages 1920-1933 Yu, Q ; Maddah Ali, M. A ; Avestimehr, A. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers' delay performance bottleneck, which is due to the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks. We propose a novel coding strategy, named entangled polynomial code, for designing the intermediate computations at the worker nodes in order to minimize the recovery threshold (i.e., the number of workers that we need to wait for in order to compute the final output). We demonstrate the optimality of entangled polynomial code in several cases, and show... 

    Electric vehicles as mobile energy storage devices to alleviate network congestion

    , Article 2019 Smart Gird Conference, SGC 2019, 18 December 2019 through 19 December 2019 ; 2019 ; 9781728158945 (ISBN) Haji Abolhassani, M ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Electric vehicles (EVs) usage is becoming ubiquitous nowadays. Widespread integration of electric vehicles into electric energy distribution systems (EEDSs) has a twofold impact: (1) It may impose a burden on EEDSs when EVs are charging, (2) EVs could discharge their battery capacity using V2G technology when required. To mitigate adverse effects of massive integration of EVs in EEDSs, EVs could be used as mobile energy storage devices (MESDs) to transfer electric energy throughout EEDSs using a proper charging/discharging scheme. In this paper, a mixed integer linear programming (MILP) model is proposed to control charging and discharging of EVs to improve EEDS performance. EVs are modeled... 

    Optimal switch placement in power distribution systems with complex configurations

    , Article 2019 Smart Gird Conference, SGC 2019, 18 December 2019 through 19 December 2019 ; 2019 ; 9781728158945 (ISBN) Jalilian, A ; Taheri, B ; Safdarian, A ; Sharif University of Technology
    Institute of electrical and electronics engineers Inc  2019
    Abstract
    Sectionalizing switches are the main components of any restoration scheme in fault situations of power distribution systems. In this paper, customer outage costs reduction is aimed through the optimal simultaneous placement of manual and remote-controlled switches (RCSs). Network reconfigurations are constrained such that operational considerations like statutory ranges for voltage levels, lines' thermal capacities, and necessity of radial configuration be conserved. Total cost reduction is mathematically modeled in a mixed-integer linear programming (MILP) model that makes the global optimal solution accessible. The validity of the proposed model is evaluated on the IEEE 33-bus network. In... 

    Hardening strategy to boost resilience of distribution systems via harnessing a proactive operation model

    , Article 2019 Smart Gird Conference, SGC 2019, 18 December 2019 through 19 December 2019 ; 2019 ; 9781728158945 (ISBN) Taheri, B ; Jalilian, A ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Nowadays, large-scale power outages induced by ever-growing natural disasters are increasing at a galloping rate. In this regard, this paper aims at improving the resilience of power distribution systems in facing high impact low probability (HILP) events in the planning phase of the system. To this end, optimal switch placement along with the optimal distribution line hardening strategies is proposed to mitigate the repercussions of the natural calamities. So, decreasing the failure probability of the distribution lines alongside the optimal placement of remote-controlled switches (RCSs) to increase the maneuvering capability of the system, the system operator would be able to strengthen... 

    Unsupervised learning for distribution grid line outage and electricity theft identification

    , Article 2019 Smart Gird Conference, SGC 2019, 18 December 2019 through 19 December 2019 ; 2019 ; 9781728158945 (ISBN) Soleymani, M ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The development of smart meters enables situational awareness in electric power distribution systems. The situational awareness provides significant advantages such as line outage and electricity theft detection. This paper aims at using smart meter data to detect these anomalies. To do so, an appropriate cluster-based method as an unsupervised machine learning approach is applied. A stochastic method based on conditional correlation is also proposed to localize the anomalies. It is shown that this can be done by detecting changes in bus connections using present and historical smart meter data. Therefore, network topology inspection can be avoided if the proposed method is applied. A...