Loading...
Search for: diffusion
0.01 seconds
Total 761 records

    Phase transformations during diffusion brazing of IN718/Ni-Cr-B/IN718

    , Article Materials Science and Technology (United Kingdom) ; Volume 29, Issue 8 , 2013 , Pages 980-984 ; 02670836 (ISSN) Pouranvari, M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    2013
    Abstract
    The production of robust joints after diffusion brazing necessitates the advanced understanding of phase transformations during the bonding process. This paper aims to investigate the solidification and the solid state precipitation during diffusion brazing of wrought IN718 nickel base superalloy using Ni-15Cr-4B (wt-%) filler alloy. It was found that intermetallics containing eutectic type microconstituents were formed in the joint centreline by solidification which is controlled by segregation behaviour of B and its low solubility in Ni rich solid solution. In addition, extensive Cr-Mo-Nb rich precipitates were formed in the substrate region by solid state precipitation induced by B... 

    Nanocar and nanotruck motion on gold surface

    , Article 1st International Conference on Manipulation, Automation and Robotics at Small Scales, MARSS 2016, 18 July 2016 through 21 July 2016 ; 2016 ; 9781509015108 (ISBN) Nemati, A. R ; Nejat Pishkenari, H ; Meghdari, A ; Shorabpour, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    In this paper we have studied the motion of a nanocar and nanotruck on gold substrate using the classical molecular dynamics method. Analyzing the motion regime of the nanocar at different temperatures is one of the main goals of this paper. In the past years, similar molecules such as Trimmer, Z-car and nanotruck have been simulated by Konyukhov and Akimov. To increase the modeling accuracy in this paper we have used classical molecular dynamics contrary to previous works which used a rigid body molecular dynamics method. The result of our simulations were compared qualitatively to the experimental tests performed by Zhang et al. [12]. There was a good agreement between the results achieved... 

    A closer look at the motion of p-carborane on gold surface

    , Article 1st International Conference on Manipulation, Automation and Robotics at Small Scales, 18 July 2016 through 21 July 2016 ; 2016 ; 9781509015108 (ISBN) Hosseini Lavasani, S. M ; Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    In recent years, nanocars with p-carborane wheels have been a subject of interest as an artificial molecular machine. Researchers aim to discover compositions that are easier to fabricate, efficient and are more stable on the surface. The p-carborane molecule has all these key elements, making it a viable choice as a nanocar wheel, and the mobility of a nanocar is heavily influenced by the motion of its wheels. In this research, we use classical Molecular Dynamics (MD) in isothermal conditions to specify the regime of motion of p-carborane at different temperatures. We find that by raising the temperature, three different regimes of motion may be observed: jumps to adjacent cells, long... 

    Computation of some thermodynamic properties of nitrogen using a new intermolecular potential from molecular dynamics simulation

    , Article Chemical Physics ; Volume 358, Issue 3 , 2009 , Pages 185-195 ; 03010104 (ISSN) Kafshdar Goharshadi, E ; Abbaspour, M ; Namayandeh Jorabchi, M ; Nahali, M ; Sharif University of Technology
    2009
    Abstract
    A new pair-potential energy function of nitrogen has been determined via the inversion of reduced viscosity collision integrals and fitted to obtain an analytical potential form. The pair-potential reproduces the second virial coefficient, viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor of nitrogen in a good accordance with experimental data over wide ranges of temperatures and densities. We have also performed the molecular dynamics simulation to obtain pressure, internal energy, heat capacity at constant volume, and self-diffusion coefficient of nitrogen at different temperatures and densities using our calculated pair-potential and some other... 

    Authors’ reply to a comment on M. pasdar et al article

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 561 , 2019 , Pages 407-408 ; 09277757 (ISSN) Pasdar, M ; Kazemzadeh, E ; Kamari, E ; Ghazanfari, M. H ; Soleymani, M ; Sharif University of Technology
    Elsevier B.V  2019

    Numerical solution of stochastic differential equations: diffusion and jump-diffusion processes

    , Article Understanding Complex Systems ; 2019 , Pages 129-142 ; 18600832 (ISSN) Rahimi Tabar, M. R ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Stochastic differential equations (SDE) play an important role in a range of application areas, including biology, physics, chemistry, epidemiology, mechanics, microelectronics, economics, and finance [1]. However, most SDEs, especially nonlinear SDEs, do not have analytical solutions, so that one must resort to numerical approximation schemes in order to simulate trajectories of the solutions to the given equation. The simplest effective computational method for approximation of ordinary differential equations is the Euler’s method. The Euler–Maruyama method is the analogue of the Euler’s method for ordinary differential equations for numerical simulation of the SDEs [2]. Another numerical... 

    Numerical solution of stochastic differential equations: diffusion and jump-diffusion processes

    , Article Understanding Complex Systems ; 2019 , Pages 129-142 ; 18600832 (ISSN) Rahimi Tabar, M. R ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Stochastic differential equations (SDE) play an important role in a range of application areas, including biology, physics, chemistry, epidemiology, mechanics, microelectronics, economics, and finance [1]. However, most SDEs, especially nonlinear SDEs, do not have analytical solutions, so that one must resort to numerical approximation schemes in order to simulate trajectories of the solutions to the given equation. The simplest effective computational method for approximation of ordinary differential equations is the Euler’s method. The Euler–Maruyama method is the analogue of the Euler’s method for ordinary differential equations for numerical simulation of the SDEs [2]. Another numerical... 

    Micromorphic balance equations in mass transport and mass production

    , Article International Journal of Engineering Science ; Volume 153 , 2020 Javadi, M ; Epstein, M ; Asghari, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The balance equations for micromorphic materials with mass flux and mass production are determined based on the phenomenon of self-diffusion. In this study, the self-diffusive flux is the flux of mass of a single micromorphic species within itself which is captured by defining the relative macro-element spatial velocity vector and the relative micro-gyration tensor. By use of a binary micromorphic mixture theory, the self-diffusion of a single micromorphic species within itself results in an extra diffusive momentum field, an extra diffusive moment of momentum and their respective non-compliant terms. The concepts of the macro- and micro-mass flux are studied in the framework of the... 

    Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80

    , Article Surface and Coatings Technology ; Volume 202, Issue 8 , 2008 , Pages 1385-1391 ; 02578972 (ISSN) Rahmani, Kh ; Nategh, S ; Sharif University of Technology
    2008
    Abstract
    Ni-base superalloy René 80 is widely used in manufacturing aircraft turbine blades. The service temperature of this alloy is in the range of 760-982 °C. Although this alloy possesses suitable mechanical, oxidation and hot corrosion properties, it is coated in order to increase its wear, oxidation, erosion and hot corrosion properties against harmful environmental service conditions. In this paper the influence of applying diffusion coating (CODEP-B) on the tensile properties of René 80 has been studied in the temperature range of 22-982 °C. Experimental results show that the tensile properties of the coated specimens are relatively lower than that of uncoated ones in the same conditions. But... 

    A modified space - Time finite element method for simulation of immiscible incompressible two-phase flow in heterogeneous porous media

    , Article International Journal for Numerical Methods in Fluids ; Volume 53, Issue 8 , 2007 , Pages 1221-1242 ; 02712091 (ISSN) Ferdowsi, P. A ; Taghizadeh Manzari, M ; Sharif University of Technology
    2007
    Abstract
    In this paper, a modified space-time method is presented for the simulation of convection-diffusion equations. The new method differs from the original space-time method in the sense that the weight functions for space and time are different. The performance of the proposed algorithm is studied for numerical simulation of incompressible immiscible two-phase flow in porous media. The governing equations consist of one conservation of mass equation for each phase, the Darcy law and one capillary-saturation correlation for the flow. By defining a global pressure, the governing equations lead to a system of nonlinear equations in terms of this global pressure, the velocity components and the... 

    New stable group explicit finite difference method for solution of diffusion equation

    , Article Applied Mathematics and Computation ; Volume 181, Issue 2 , 2006 , Pages 1379-1386 ; 00963003 (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    A new group explicit method for solution of diffusion equation is presented. This method is based on domain decomposition concept and using asymmetric Saul'yev schemes for internal nodes of each sub-domain and alternating group explicit method for sub-domain's interfacial nodes. This new method has several advantages such as: good parallelism, unconditional stability, fully explicit nature and better accuracy than original Saul'yev schemes. The details of implementation and proving stability are briefly discussed. Numerical experiments on stability and accuracy are also presented. © 2006 Elsevier Inc. All rights reserved  

    Reactor modeling of direct conversion of methane to methanol in a catalytic fluidized bed reactor

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Vafajoo, L ; Ghods, M ; Kazemeini, M ; Sharif University of Technology
    2006
    Abstract
    Direct conversion of methane to methanol is a more recently developed technique by which the intermediate and expensive process of formation of synthesis gas is eliminated. On the other hand, fluidized-bed technology for heterogeneous reversible reactions posses a couple of key advantages in comparison to the commonly used fixed bed reactors. These include, pore diffusion resistances being largely eliminated due to small catalyst pellet sizes utilized. In other words, industrial fixed bed pellets are in the order of 6-12 mm diameter, whereas fluidized catalyst used may be smaller than 100 μm. In addition, equilibrium limitations induced by the reversibility of the reaction(s) are broken in... 

    A kinetic study on the electrodeposition of cadmium with the presence of organic agents in sulfate solutions

    , Article Materials Chemistry and Physics ; Volume 94, Issue 1 , 2005 , Pages 23-28 ; 02540584 (ISSN) Dolati, A ; Afshar, A ; Ghasemi, H ; Sharif University of Technology
    2005
    Abstract
    The electrodeposition of cadmium is studied by electrochemical techniques with the presence of the organic agents. The cyclic voltammetry results clearly show that the electrodeposition of cadmium is a diffusion-controlled process associated with a typical nucleation process. With addition of the thiourea, 3-Picolin and benzyl alcohol organic agents simultaneously in sulfate solution, the redox potential of cadmium is shifted to more negative potentials. In this case, the current transients reveal an instantaneous nucleation with a typical three-dimensional (3D) growth mechanism, while it shows progressive nucleation mechanism without the ternary-species organic agents. In addition, the... 

    Study of Light Propagation in Biological Tissues by Means of the Monte Carlo Simulation and Diffusion Method

    , M.Sc. Thesis Sharif University of Technology Afsari Golshan, Maryam (Author) ; Amjadi, Ahmad (Supervisor) ; Ansari, Mohammad Ali (Supervisor)
    Abstract
    The tissue characteristics are important for all kinds of medical laser applications in order to understand the interaction mechanisms between light and tissue. Knowledge about light transport in tissue is essential for cancer treatment and cancer diagnostic techniques. By having the diffused reflectance of a tissue we can determine its optical characteristics. In this thesis we have solved the inverse process. That is, we compute the diffused reflectance of a turbid media with pre-determined optical parameters. This problem can be solved using two methods: Monte Carlo simulation and diffusion method. Since Monte Carlo simulation is computationally very expensive, it is not used in medical... 

    Hydrodynamic Simulation of Vascular Scaffolds

    , M.Sc. Thesis Sharif University of Technology Zehimofrad, Alireza (Author) ; Bastani, Dariush (Supervisor) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    This research studies a 3D channeled myocardium scaffold with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on cell growth in a 3D cardiac construct. The modeling results show that using 5.4% perfluorocarbon oxygen carrier (PFC) has increased cardiac cells density 15% of the initial seeded cells comparing to pure culture medium without PFC supplementation. Effects of the scaffold geometry on cell density in the construct were examined by increasing channel numbers and changing the construct length. The results show that increasing channel numbers (by 50% decreasing channels diameter and wall to wall spacing) the... 

    Cu surface segregation in Ni/Cu system

    , Article Vacuum ; Volume 84, Issue 4 , 8 December , 2009 , PP. 469-473 Rasuli, R. (Reza.) ; Iraji Zad, A. (Azam) ; Ahadian, M. M. (Mohammad M.) ; Sharif University of Technology
    Abstract
    We report experimental evidence of Cu surface segregation in Ni/Cu system, during deposition of Ni film onto Cu substrate at room temperature and during heat treatment in vacuum. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) by Tougaard's analysis results show that surface segregation defeats in competition with increase in Ni thickness and terminates when thickness of Ni increase to more than 4 nm. Surface energy and concentration were calculated using contact angle measurements and the results confirm that segregation reduces the surface energy. Surface segregation during heat treatment at 150–220 °C range as a function of time initially shows linear mass... 

    Growth kinetics of Al-Fe intermetallic compounds during annealing treatment of friction stir lap welds

    , Article Materials Characterization ; Vol. 90 , April , 2014 , pp. 121-126 ; ISSN: 10445803 Movahedi, M ; Kokabi, A. H ; Seyed Reihani, S. M ; Najafi, H ; Farzadfar, S. A ; Cheng, W. J ; Wang, C. J ; Sharif University of Technology
    Abstract
    In this study, we explored the growth kinetics of the Al-Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state.... 

    Diffusion brazing metallurgy of IN718/Ni-Cr-Si-B-Fe/IN718

    , Article Welding Journal ; Vol. 93, issue. 2 , February , 2014 , pp. 60s-68s ; ISSN: 00432296 Pouranvari, M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    This paper investigates the effect of microstructure development on mechanical properties of diffusion brazed IN718 nickel-based superalloy using a Ni-Cr-Si-B-Fe filler metal. The phase transformations during diffusion brazing of IN718/Ni-Cr-Si-B-Fe/IN718, which dictate the microstructure of the bonds are governed by diffusion-induced isothermal solidification, cooling-induced athermal solidification, and diffusion-induced solid-state precipitation. It was found that when partial isothermal solidification occurs at the bonding temperature, the residual liquid is transformed into eutectic-type microconstituents. Considering solute redistribution and segregation behavior of the melting point... 

    Numerical approach to unbiased and driven generalized elastic model

    , Article The Journal of chemical physics ; Vol. 140, Issue. 2 , 2014 , pp. 24106- ; ISSN: 0021-9606 Ghasemi Nezhadhaghighi, M ; Chechkin, A ; Metzler, R ; Sharif University of Technology
    Abstract
    From scaling arguments and numerical simulations, we investigate the properties of the generalized elastic model (GEM) that is used to describe various physical systems such as polymers, membranes, single-file systems, or rough interfaces. We compare analytical and numerical results for the subdiffusion exponent β characterizing the growth of the mean squared displacement 〈 (δh)(2)〉 of the field h described by the GEM dynamic equation. We study the scaling properties of the qth order moments 〈 {divides}δh{divides}(q)〉 with time, finding that the interface fluctuations show no intermittent behavior. We also investigate the ergodic properties of the process h in terms of the ergodicity... 

    Optimization of the direct discrete method using the solution of the adjoint equation and its application in the multi-group neutron diffusion equation

    , Article AIP Conference Proceedings ; Volume 1389 , 2011 , Pages 1777-1781 ; 0094243X (ISSN) ; 9780735409569 (ISBN) Ayyoubzadeh, S. M ; Vosoughi, N ; Sharif University of Technology
    2011
    Abstract
    Obtaining the set of algebraic equations that directly correspond to a physical phenomenon has been viable in the recent direct discrete method (DDM). Although this method may find its roots in physical and geometrical considerations, there are still some degrees of freedom that one may suspect optimize-able. Here we have used the information embedded in the corresponding adjoint equation to form a local functional, which in turn by its minimization, yield suitable dual mesh positioning