Loading...
Search for: diffusion
0.009 seconds
Total 761 records

    Rarefaction effects on gas mixing in micro- and nanoscales

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016, 4 January 2016 through 6 January 2016 ; Volume 1 , 2016 ; 9780791849651 (ISBN) Darbandi, M ; Sabouri, M ; Heat Transfer Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    We present the rarefaction effects on diffusive mass transport in micro- and nanoscales using the results of direct simulation Monte Carlo DSMC method. Unlike the previous investigations, the momentum and heat contributions are eliminated from the computations via uniform velocity, pressure, and temperature field considerations. The effects of global Knudsen number on the diffusion phenomenon are studied for the same Peclet number and a unique mixer shape. The results indicate that there is considerable weakening in diffusion mechanism for high Knudsen number cases. As a result, the non-dimensional diffusive mass fluxes would decrease and the non-dimensional mixing length would increase as... 

    Canonical polyadic decomposition for principal diffusion direction extraction in diffusion weighted imaging

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 122-127 ; 9781509059638 (ISBN) Afzali, M ; Hajipour Sardouie, S ; Fatemizadeh, E ; Soltanian Zadeh, H ; Sharif University of Technology
    Abstract
    Diffusion weighted imaging is a non-invasive method for investigation of brain fiber bundles. In diffusion tensor imaging (DTI), the diffusion of water molecules is assumed Gaussian, therefore, it can just show a single fiber direction in a voxel. To overcome this limitation, a number of high angular resolution diffusion imaging methods have been proposed. One of these techniques is Q-ball imaging. Using this method, we can extract orientation distribution function (ODF) that shows the orientations of multiple fibers in a voxel. For extracting the fiber directions, the maxima of the ODFs are conventionally determined. However, the results of this approach are sensitive to noise. To improve... 

    Bayesian hypothesis testing detector for one bit diffusion LMS with blind missing samples

    , Article Signal Processing ; Volume 146 , May , 2018 , Pages 61-65 ; 01651684 (ISSN) Zayyani, H ; Korki, M ; Marvasti, F ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper proposes a sparse distributed estimation algorithm when missing data occurs in the measurements over adaptive networks. Two classes of measurement models are considered. First, the traditional linear regression model is investigated and second the sign of the linear regression model is studied. The latter is referred to as one-bit model. We utilize the diffusion LMS strategy, in the proposed methods, where a set of nodes cooperates with each other to estimate a vector model parameter. In both models, it is shown that replacing the missing sample with a simple estimate is equivalent to removing the missing sample from the distributed diffusion algorithm. We consider two cases,... 

    Quantifying the direct influence of diffusive mass transfer in rarefied gas mixing simulations

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 140, Issue 3 , March , 2018 ; 00982202 (ISSN) Darbandi, M ; Sabouri, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    This work utilizes the direct simulation Monte Carlo (DSMC) calculations and examines the influence of rarefication on the mixing length and effective diffusion coefficient in a two-species mixing problem. There have been efforts in past rarefied mixing flow studies to bridge between the mixing evolution rate and Knudsen number. A careful review of those efforts shows that the past derived relations did not determine the weights of Reynolds (or Peclet) number in the rarefaction influences. Although they indicated that an increase in Knudsen would decrease the mixing length, such reductions were primarily due to the Reynolds (or Peclet) reduction. Therefore, those studies could not explicitly... 

    Application of the Maxwell-Stefan theory in modeling gas diffusion experiments into isolated oil droplets by water

    , Article Physics of Fluids ; Volume 34, Issue 11 , 2022 ; 10706631 (ISSN) Mirazimi, S ; Rostami, B ; Ghazanfari, M. H ; Khosravi, M ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    We have used the Maxwell-Stefan diffusion theory to model the mass transfer between tertiary-injected gas and residual oil blocked by water, in order to predict the time required for the rupture of the water barrier due to oil swelling. We have also designed and conducted a set of visualization micromodel experiments on various pure and multicomponent oil-gas systems to measure the water rupture time in tertiary gas injection processes. The experimental results show that the initial pressure and dimensions of the system, the oil and gas composition, and the gas solubility in water control the oil swelling process. The experimentally measured rupture times are then employed to evaluate the... 

    Experimental investigation of gas-heavy oil molecular diffusion coefficient in porous media: Experimental results for CO2 in Iranian Crudes

    , Article Defect and Diffusion Forum ; Volume 312-315 , 2011 , Pages 1049-1054 ; 10120386 (ISSN) ; 9783037851173 (ISBN) Mirjordavi, N ; Kazemeini, M ; Kharrat, R ; Ghazanfari, M. H ; Salehi, A ; Sharif University of Technology
    Abstract
    Molecular diffusion of gases in crude oils plays a crucial role in several oil recovery processes especially in cold-based production process. However, experimental data concerning CO2 diffusivity in heavy oils due to the tedious nature of diffusivity measurements are relatively rare in the open literature. In this work, a comprehensive experimental investigation of the effective molecular diffusion determination of CO2-heavy oil systems in homogeneous porous media was studied. The so-called pressure decay method was applied to measure the molecular diffusivity of carbon dioxide in heavy oil. Furthermore, effect of various parameters such as initial pressure, temperature and porous media on... 

    Study of self-diffusion in two binary solutions, glycerol-water and methanol-water using diffusion-ordered spectroscopy

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 1175-1183 ; 10263098 (ISSN) Fadaei, E ; Tafazzoli, M ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    The concentration and temperature behaviors of the self-diffusion coefficient were analyzed in glycerol-water and methanol-water solutions using Diffusion-Ordered Spectroscopy (DOSY) experiment. Our results indicate that the self-diffusion coefficient dips with increasing concentration and decreasing temperature. The concentration behavior shows that there is hydrogen bond interaction between water and alcohol, which declines the self-diffusion coefficients of both in the aqueous binary mixtures. The self-diffusion activation energies were estimated 13.6, 29.4, and 32.8 (kJ/mol) for methanol and 24.8, 25.5, and 27.6 (kJ/mol) for water in the methanol-water solutions with 0.03, 0.10, and 0.20... 

    Anomalous diffusion of proteins in sheared lipid membranes

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 88, Issue 3 , September , 2013 ; 15393755 (ISSN) Khoshnood, A ; Jalali, M. A ; Sharif University of Technology
    2013
    Abstract
    We use coarse grained molecular dynamics simulations to investigate diffusion properties of sheared lipid membranes with embedded transmembrane proteins. In membranes without proteins, we find normal in-plane diffusion of lipids in all flow conditions. Protein embedded membranes behave quite differently: by imposing a simple shear flow and sliding the monolayers of the membrane over each other, the motion of protein clusters becomes strongly superdiffusive in the shear direction. In such a circumstance, the subdiffusion regime is predominant perpendicular to the flow. We show that superdiffusion is a result of accelerated chaotic motions of protein-lipid complexes within the membrane voids,... 

    Computational investigation of sulphate diffusion into the dog disc

    , Article 2011 18th Iranian Conference of Biomedical Engineering, ICBME 2011, 14 December 2011 through 16 December 2011 ; December , 2011 , Pages 161-164 ; 9781467310055 (ISBN) Motaghinasab, S ; Shirazi Adl, A ; Urban, J ; Parnianpour, M ; Hoviattalab, M ; Sharif University of Technology
    2011
    Abstract
    We proposed a model to investigate the transient diffusion of drug (sulphate) into the intervertebral disc. Using finite element method, drug diffusion was simulated and the concentration of diffused drug in each region of disc including Nucleus pulpous (NP), Inner annulus fibroses (IA), and Outer annulus fibroses (OA) was measured. In addition, to investigate the role of CEP permeability on the amount of diffused drug, model was simulated with different cartilage endplate (CEP) permeability. Having obtained concentration distribution for different cases, it was clearly shown that the amount of diffused drug is affected by the endplate permeability and the more permeable CEP, the more... 

    Invariance in growth and mass transport

    , Article Mathematics and Mechanics of Solids ; Volume 24, Issue 6 , 2019 , Pages 1707-1713 ; 10812865 (ISSN) Javadi, M ; Epstein, M ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    The equations of balance of a continuum under conditions of growth and mass diffusion are derived from a principle of invariance under general observer transformations. The resulting equations are invariant under inertial transformations. Apparent body forces stemming from the mass transport phenomenon are identified and shown to be associated with non-inertial observers  

    Precise localization of neutron noise sources based on transport theory and comparison with diffusion theory

    , Article Annals of Nuclear Energy ; Volume 151 , 2021 ; 03064549 (ISSN) Bahrami, M ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In an attempt to explore the significance of transport theory in neutron noise, localization of a noise source by Green's function based on transport theory is investigated. There are considerable differences between Green's functions based on diffusion and transport, such as small dimensions, near edges, high heterogeneity medium and high-frequency source of perturbation. These differences are expected to significantly impact unfolding, reconstruction, and identification of the neutron noise source. Improvement in noise source unfolding methods is essential in terms of safety aspects and reactor performance enhancement. Since gaining the ability to monitor nuclear reactor based on noise... 

    Structural virality estimation and maximization in diffusion networks

    , Article Expert Systems with Applications ; Volume 206 , 2022 ; 09574174 (ISSN) Sepehr, A ; Beigy, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Social media usage is one of the most popular online activities and people shares millions of message in a short time; however this information rarely goes viral. The diffusion process begins with an initial set of source nodes and continues with other nodes. In addition, the viral cascade is triggered when the number of infected nodes exceeds a specific threshold. Then, we find an initial set of source nodes that maximizes the number of infected nodes given the source nodes. This study aims to answer the following questions: how does a spread like a viral cascade propagate in a network? Do the structural properties of the propagation pattern play an important role in virality? If so, can we... 

    High angular resolution diffusion image registration

    , Article Iranian Conference on Machine Vision and Image Processing, MVIP ; Sept , 2013 , Pages 232-236 ; 21666776 (ISSN) ; 9781467361842 (ISBN) Afzali, M ; Fatemizadeh, E ; Soltanian Zadeh, H ; Sharif University of Technology
    IEEE Computer Society  2013
    Abstract
    Diffusion Tensor Imaging (DTI) is a common method for the investigation of brain white matter. In this method, it is assumed that diffusion of water molecules is Gaussian and so, it fails in fiber crossings where this assumption does not hold. High Angular Resolution Diffusion Imaging (HARDI) allows more accurate investigation of microstructures of the brain white matter; it can present fiber crossing in each voxel. HARDI contains complex orientation information of the fibers. Therefore, registration of these images is more complicated than the scalar images. In this paper, we propose a HARDI registration algorithm based on the feature vectors that are extracted from the Orientation... 

    Oxygen diffusion mechanism in MgO-C composites: An artificial neural network approach

    , Article Modelling and Simulation in Materials Science and Engineering ; Volume 20, Issue 1 , December , 2012 ; 09650393 (ISSN) Nemati, A ; Nemati, E ; Sharif University of Technology
    2012
    Abstract
    An artificial neural network (ANN) model was used to predict the weight loss of MgO-C composites at different temperatures and graphite contents. The general idea of ANN modeling was presented and after that the empirical weight loss data were used for both model verification and assessment of the oxidation rate predictions. The model was proved to have an astounding power in predicting kinetic parameters of the oxidation process. Graphite oxidation was, for example, found to be controlled by alternative diffusion steps. Plotting the Arrhenius law curves for graphite oxidation indicated a distinguishable slope change at a critical temperature which is related to the graphite content. This... 

    Electrochemical charging of H in sour simulated environment in steel

    , Article European Corrosion Congress 2011, EUROCORR 2011 ; Volume 4 , 2011 , Pages 2978-2988 ; 9781618394125 (ISBN) Fallahmohammadi, E ; Dolati, A ; Bolzoni, F ; Lazzari, L ; Sharif University of Technology
    2011
    Abstract
    The hydrogen diffusivity and subsurface concentration (C app) were evaluated by fitting a series expansion of the diffusion equation to the permeation data. The hydrogen diffusivity in the steel was found to be approximately in a order of magnitude 10 -7 cm 2 s -1. The influence of the passive layer on the hydrogen permeation and its influence on the evaluation of diffusion and trapping characteristics were discussed. Hydrogen diffusion experiments in A106 GRB carbon steel pipeline were performed electrochemically at 25°C in NACE B, solution in various amount of sulphide ion concentrations. In this case the effect of concentration of sulphide ion evaluated by study the electrochemical... 

    The propagation of laser light in skin by Monte Carlo-diffusion method: A fast and accurate method to simulate photon migration in biological tissues

    , Article Journal of Lasers in Medical Sciences ; Volume 2, Issue 3 , 2011 , Pages 109-114 ; 20089783 (ISSN) Golshan, M. A ; Tarei, M. G ; Ansari, M. A ; Amjadi, A ; Sharif University of Technology
    2011
    Abstract
    Introduction: Due to the importance of laser light penetration and propagation in biological tissues, many researchers have proposed several numerical methods such as Monte Carlo, finite element and green function methods. Among them, the Monte Carlo method is an accurate method which can be applied for different tissues. However, because of its statistical nature, Monte Carlo simulation requires a large number of photon pockets to be traced, so it is computationally expensive and time-consuming. Although other numerical methods based on the diffusion method are fast, they have two important limitations: first, they are not valid near the bounder of sample and source, and second, their... 

    Study of electrochemical hydrogen permeation in iron

    , Article Journal of Corrosion Science and Engineering ; Volume 14 , February , 2011 , 263–267 ; 14668858 (ISSN) Fallahmohammadi, E ; Dolati, A ; Lazzari, L ; Bolzoni, F ; Sharif University of Technology
    Abstract
    Hydrogen diffusion experiments in A106GR B carbon steel pipeline were performed electrochemically at 25°C in NACE,B, solution in various amount of sulfide ion concentration for a thin sample. In this case the effect of concentration of sulfide ion evaluated by study the electrochemical behavior of sample by the galvanostatic way. Generally, sulfur components were found to increase the hydrogen permeation rate. Presence of sulfide layer helped to absorption of hydrogen reduction and exacerbates the amount of hydrogen absorption in steel. this phenomena can be noted that as regard to analysis of corrosion products which formed in the surface sample, the high amount of FeS, The sulfide ion are... 

    Solution of diffusion equation in deformable spheroids

    , Article Annals of Nuclear Energy ; Volume 38, Issue 5 , 2011 , Pages 982-988 ; 03064549 (ISSN) Ayyoubzadeh, S. M ; Safari, M. J ; Vosoughi, N ; Sharif University of Technology
    2011
    Abstract
    The time-dependent diffusion of neutrons in a spheroid as a function of the focal distance has been studied. The solution is based on an orthogonal basis and an extrapolation distanced related boundary condition for the spheroidal geometry. It has been shown that spheres and disks are two limiting cases for the spheroids, for which there is a smooth transition for the systems properties between these two limits. Furthermore, it is demonstrated that a slight deformation from a sphere does not affect the fundamental mode properties, to the first order. The calculations for both multiplying and non-multiplying media have been undertaken, showing good agreement with direct Monte Carlo... 

    Effect of Si antioxidant on the rate of oxidation of carbon in MgO-C refractory

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 24, Issue 4 , 2011 , Pages 357-366 ; 1728-144X (ISSN) Sadrnezhaad, S. K ; Bagheri, N ; Mahshid, S ; Sharif University of Technology
    Materials and Energy Research Center  2011
    Abstract
    Progressive conversion/shrinking core (PC-SC) models of constant-size cylinders were exploited to interpret the decarburization reactions of MgO-C-Si bricks heated up under blown air. Chemical adsorption/solid (or pore) diffusion mechanisms governed the reaction rate. With 5% silicon, chemical adsorption vanished at 1000 and 1100°C. The oxidation rate lowered then with temperature. This was due apparently to the blocking of the pore-end gorges by the voluminous compounds (like Forstrite). Arrhenius plots of the specific rates yielded the activation energies of the prevailing steps. Without Si antioxidant, three steps were appreciated having activation energies of 51.65 (for chemical... 

    Bond strength and mechanical properties of three-layered St/AZ31/St composite fabricated by roll bonding

    , Article Materials and Design ; Volume 88 , 2015 , Pages 880-888 ; 02641275 (ISSN) Abedi, R ; Akbarzadeh, A ; Sharif University of Technology
    2015
    Abstract
    The aim of this research is bonding of three-layered St/AZ31/St composite by roll-bonding process. The roll-bonding process was performed at three preheating temperatures, 340, 400 and 450°C, with thickness reduction of 30 to 68% and different thicknesses of intermediate layer (AZ31). In order to improve the bonding strength, the as-rolled specimens were annealed at constant temperature of 375°C. For evaluation of bond strength and investigating the formation of a diffusion layer, the results of peel test and microscopic images were studied. Tensile specimens were prepared along the rolling direction to measure the mechanical properties of the composite. The results showed that by increasing...