Loading...
Search for: differentiation--calculus
0.007 seconds

    Post-buckling optimization of two-dimensional functionally graded porous beams

    , Article International Journal of Mechanics and Materials in Design ; Volume 15, Issue 4 , 2019 , Pages 801-815 ; 15691713 (ISSN) Jamshidi, M ; Arghavani, J ; Maboudi, G ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In the present study, an attempt is made to present the governing equations on the post-buckling of two-dimensional (2D) FGP beams and propose appropriate optimization procedure to achieve optimal post-buckling behavior and mass. To this end, Timoshenko beam theory, Von-Karman nonlinear relations, virtual work principle, and generalized differential quadrature method are considered to derive and solve governing equations and associated boundary condition (Hinged–Hinged) for an unknown 2D porosity distribution. Proposed method is validated using the papers in the literature. The optimization procedure including defining porosity distributions (interpolations), post-buckling function and... 

    Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets

    , Article JVC/Journal of Vibration and Control ; Volume 25, Issue 19-20 , 2019 , Pages 2627-2640 ; 10775463 (ISSN) Mohammadgholiha, M ; Shokrgozar, A ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    In this study, buckling and vibrational characteristics of a nanoshell reinforced with graphene nanoplatelets under uniform axial load are investigated. The material properties of the piece-wise graphene-reinforced composites (GPLRCs) are assumed to be graded in the thickness direction of a nanoshell and are estimated using a nanomechanical model. The effects of the small scale are analyzed based on nonlocal stress–strain gradient theory (NSGT). The governing equations and boundary conditions (BCs) are developed using Hamilton’s principle and are solved with assistance of the generalized differential quadrature method. The novelty of the current study is the consideration of GPLRC and size... 

    Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator

    , Article JVC/Journal of Vibration and Control ; Volume 25, Issue 9 , 2019 , Pages 1543-1557 ; 10775463 (ISSN) Safarpour, H ; Pourghader, J ; Habibi, M ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    In this article, vibrational behavior and critical voltage of a spinning cylindrical thick shell covered with piezoelectric actuator (PIAC) carrying spring-mass systems are investigated. It should be noted that, the installed sensors on the proposed systems are considered as a tip mass. This structure rotates about axial direction and the formulations include the Coriolis and centrifugal effects. In addition, various cases of thermal (uniform, linear, and nonlinear) distributions are studied. The modeled cylindrical thick shell covered with PIAC, its equations of motion, and boundary conditions are derived by the principle of minimum total potential energy and based on a new... 

    Vibration band gap properties of a periodic beam-like structure using the combination of GDQ and GDQR methods

    , Article Waves in Random and Complex Media ; 2019 ; 17455030 (ISSN) Hajhosseini, M ; Mahdian Parrany, A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, a periodic beam-like structure consisting of the horizontal and inclined beam elements is proposed. Three models with three different angles of inclination are considered. The generalized differential quadrature (GDQ) and generalized differential quadrature rule (GDQR) methods are used to solve the differential equations of longitudinal and transverse vibrations, respectively. The effects of two geometrical parameters on the first three band gaps of each model are investigated, comprehensively. Results show that this periodic structure has wide band gaps at low frequency ranges. Furthermore, the band gaps can get close to each other by changing the geometrical parameters.... 

    Vibration band gap properties of a periodic beam-like structure using the combination of GDQ and GDQR methods

    , Article Waves in Random and Complex Media ; 2019 ; 17455030 (ISSN) Hajhosseini, M ; Mahdian Parrany, A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, a periodic beam-like structure consisting of the horizontal and inclined beam elements is proposed. Three models with three different angles of inclination are considered. The generalized differential quadrature (GDQ) and generalized differential quadrature rule (GDQR) methods are used to solve the differential equations of longitudinal and transverse vibrations, respectively. The effects of two geometrical parameters on the first three band gaps of each model are investigated, comprehensively. Results show that this periodic structure has wide band gaps at low frequency ranges. Furthermore, the band gaps can get close to each other by changing the geometrical parameters.... 

    Free vibration of joined cylindrical–hemispherical FGM shells

    , Article Archive of Applied Mechanics ; Volume 90, Issue 10 , 2020 , Pages 2185-2199 Bagheri, H ; Kiani, Y ; Bagheri, N ; Eslami, M. R ; Sharif University of Technology
    Springer  2020
    Abstract
    Free vibration response of a joined shell system including cylindrical and spherical shells is analyzed in this research. It is assumed that the system of joined shell is made from a functionally graded material (FGM). Properties of the shells are assumed to be graded through the thickness. Both shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first-order shear deformation theory of shells is used. The Donnell type of kinematic assumptions is adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton’s principle. The resulting system of equations is... 

    Frequency characteristics of a viscoelastic graphene nanoplatelet–reinforced composite circular microplate

    , Article JVC/Journal of Vibration and Control ; 2020 Ghabussi, A ; Habibi, M ; NoormohammadiArani, O ; Shavalipour, A ; Moayedi, H ; Safarpour, H ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    This is the first research on the frequency analysis of a graphene nanoplatelet composite circular microplate in the framework of a numerical-based generalized differential quadrature method. Stresses and strains are obtained using the higher order shear deformation theory. The microstructure is surrounded by a viscoelastic foundation. Rule of the mixture is used to obtain varying mass density and Poisson’s ratio, whereas the module of elasticity is computed by a modified Halpin–Tsai model. Governing equations and boundary conditions of the graphene nanoplatelet composite circular microplate are obtained by implementing Hamilton’s principle. The results show that outer to inner radius ratio... 

    Effect of mode shape switching on the loss factor of sandwich cylinders

    , Article AIAA Journal ; Volume 58, Issue 8 , August , 2020 , Pages 3577-3592 Mokhtari, M ; Asgari, M ; Haddadpour, H ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2020
    Abstract
    Damping characteristics of three-layered sandwich cylindrical shells with the focus on mode switching phenomenon are investigated in the present study. All layers of the sandwich cylinder are formulated based on the first-order shear deformation theory. Considering the von Karman strain displacement relations, the nonlinear equations of motion are derived through Hamilton’s principle. By separating the displacement components into previbration and vibration states and substituting in the obtained nonlinear equations of motion, the previbration equilibrium equations and vibration equations of motion are obtained. The acquired equations are solved by applying the generalized differential... 

    Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator

    , Article Mechanics Based Design of Structures and Machines ; 2020 Jermsittiparsert, K ; Ghabussi, A ; Forooghi, A ; Shavalipour, A ; Habibi, M ; won Jung, D ; Safa, M ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Due to the remarkable progress in the field of the manufacturing process, smart composites have become the desired target for high-tech engineering applications. Accordingly, for the first time, thermal buckling, critical voltage and vibration response of a thermally affected graphene nanoplatelet reinforced composite (GPLRC) microdisk in the thermal environment are explored with the aid of generalized differential quadrature method (GDQM). Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin-Tsai micromechanics is used to acquire the elasticity of the structure, whereas, the variation of thermal expansion, Poisson’s ratio, and density... 

    Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM

    , Article Thin-Walled Structures ; Volume 150 , 2020 Safarpour, M ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This is the first research on the free vibration analysis of functionally graded graphene platelets reinforced composite (FG-GPLRC) viscoelastic annular plate resting on the visco-Pasternak foundation and subjected to the nonlinear temperature gradient and mechanical loading within the framework of higher-order shear deformation theory (HSDT). Hamilton's principle is employed to establish governing equations within the framework of HSDT. In this paper, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Generalized differential quadrature method (GDQM) is applied... 

    On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk

    , Article Engineering with Computers ; 2020 Safarpour, M ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    This is the first research on the nonlinear frequency analysis of a multi-scale hybrid nanocomposite (MHC) disk (MHCD) resting on an elastic foundation subjected to nonlinear temperature gradient and mechanical loading is investigated. The matrix material is reinforced with carbon nanotubes (CNTs) or carbon fibers (CF) at the nano- or macroscale, respectively. We present a modified Halpin–Tsai model to predict the effective properties of the MHCD. The displacement–strain of nonlinear vibration of multi-scale laminated disk via third-order shear deformation theory (TSDT) and using Von Karman nonlinear shell theory is obtained. Hamilton’s principle is employed to establish the governing... 

    The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer

    , Article Engineering with Computers ; 2020 Shamsaddini Lori, E ; Ebrahimi, F ; Elianddy Bin Supeni, E ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    In this research, electrically characteristics of a graphene nanoplatelet (GPL)-reinforced composite (GPLRC) microdisk are explored using generalized differential quadrature method. Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin–Tsai micromechanics is used to acquire the elasticity of the structure, whereas the variation of thermal expansion, Poisson’s ratio, and density through the thickness direction is determined by the rule of mixtures. Hamilton’s principle is implemented to establish governing equations and associated boundary conditions of the GPLRC microdisk joint with PIAC. The compatibility conditions are satisfied by... 

    Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation

    , Article Thin-Walled Structures ; Volume 154 , 2020 Shariati, A ; Ghabussi, A ; Habibi, M ; Safarpour, H ; Safarpour, M ; Tounsi, A ; Safa, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This is a fundamental study on the nonlinear vibrations considering large amplitude in multi-sized hybrid Nano-composites (MHC) disk (MHCD) relying on nonlinear elastic media and located in an environment with gradually changed temperature feature. Carbon fibers (CF) or carbon nanotubes (CNTs) in the macro or nano sizes respectively are responsible for reinforcing the matrix. For prediction of the efficiency of the properties MHCD's modified Halpin-Tsai theory has been presented. The strain-displacement relation in multi-sized laminated disk's nonlinear dynamics through applying Von Karman nonlinear shell-theory and using third-order-shear-deformation-theory (TSDT) is determined. The energy... 

    Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 234, Issue 2 , 2020 , Pages 512-529 Shokrgozar, A ; Safarpour, H ; Habibi, M ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this research, buckling and vibrational characteristics of a spinning cylindrical moderately thick shell covered with piezoelectric actuator carrying spring-mass systems are performed. This structure rotates about axial direction and the formulations include the Coriolis and centrifugal effects. In addition, various cases of thermal (uniform, linear, and nonlinear) distributions are studied. The modeled cylindrical moderately thick shell covered with piezoelectric actuator, its equations of motion, and boundary conditions are derived by the Hamilton's principle and based on a moderately cylindrical thick shell theory. For the first time in the present study, attached mass-spring systems... 

    Boundary control of a vibrating FGM rectangular plate

    , Article 12th International Conference on Intelligent Engineering Systems, INES 2008, Miami, FL, 25 February 2008 through 29 February 2008 ; 2008 , Pages 13-18 ; 9781424420834 (ISBN) Rastgoftar, H ; Eghtesad, M ; Khayatian, A ; Rastgoftar, H ; Sharif University of Technology
    2008
    Abstract
    This paper presents a solution to the boundary stabilization of a FGM plate in free transverse vibration. The composite laminated plate dynamics is presented by a linear forth order partial differential equation (PDE). A linear control law is constructed to stabilize the plate. The control force consists of feedback of the velocity at the boundaries of plate. The novelty of this article is that it is possible to stabilize asymptotically a free transversely vibrating composite plate with simply supported or clamped boundary condition via boundary control without resorting to truncation of the model. © 2008 IEEE  

    A linear theory for bending stress-strain analysis of a beam with an edge crack

    , Article Engineering Fracture Mechanics ; Volume 75, Issue 16 , 2008 , Pages 4695-4705 ; 00137944 (ISSN) Behzad, M ; Meghdari, A ; Ebrahimi, A ; Sharif University of Technology
    2008
    Abstract
    In this paper, a new linear theory for bending stress-strain analysis of a cracked beam has been developed. A displacement field has been suggested for the beam strain and stress calculations. The bending differential equation for the beam has been written using equilibrium equations. The required constant for this model is also obtained from fracture mechanics. The bending equation has been solved for a simply supported beam with rectangular cross-section and the results are compared with finite element and empirical results. There is an excellent agreement between theoretical results and those obtained by numerical and empirical methods. The model developed in this research is a simple and... 

    A meshless approach for solution of Burgers' equation

    , Article Journal of Computational and Applied Mathematics ; Volume 220, Issue 1-2 , 2008 , Pages 226-239 ; 03770427 (ISSN) Hashemian, A ; Mohammadi Shodja, H ; Sharif University of Technology
    2008
    Abstract
    A new meshless method called gradient reproducing kernel particle method (GRKPM) is proposed for numerical solutions of one-dimensional Burgers' equation with various values of viscosity and different initial and boundary conditions. Discretization is first done in the space via GRKPM, and subsequently, the reduced system of nonlinear ordinary differential equations is discretized in time by the Gear's method. Comparison with the exact solutions, which are only available for restricted initial conditions and values of viscosity, approves the efficacy of the proposed method. For challenging cases involving small viscosities, comparison with the results obtained using other numerical schemes... 

    A novel method for systematic error prediction of CMOS folding and interpolating ADC

    , Article APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems, 4 December 2006 through 6 December 2006 ; 2006 , Pages 1768-1771 ; 1424403871 (ISBN); 9781424403875 (ISBN) Babaie, M ; Movahedian, H ; Bakhtiar, M. S ; Sharif University of Technology
    2006
    Abstract
    In this paper, the systematic error due to interpolation in CMOS deep sub micron folding and interpolating ADC is studied and a closed form equation is presented to calculate the error as a function of interpolation coefficient, input voltage range and the number of input differential pairs. The amount of INL due to interpolation error can be considered as the lower bound for attainable INL of a specific ADC architecture. A case study for an 8_bit ADC is treated under consideration of different folding and interpolating factors. The trade off between power dissipation and ADC performance is characterized according to input stage characteristics. ©2006 IEEE  

    Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter

    , Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 5 , 2021 , Pages 738-762 ; 15397734 (ISSN) Ghabussi, A ; Ashrafi, N ; Shavalipour, A ; Hosseinpour, A ; Habibi, M ; Moayedi, H ; Babaei, B ; Safarpour, H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Due to the rapid development of process manufacturing, composite materials with graphene-reinforcement have obtained commercially notices in promoted engineering applications. For this regard, vibrational characteristics of a cylindrical nanoshell reinforced by graphene nanoplatelets (GPL) and coupled with piezoelectric actuator (PIAC) is investigated. Also, the nanostructure is embedded in a viscoelastic medium. The material properties of piece-wise graphene-reinforced composite (GPLRC) are assumed to be graded in the thickness direction of a cylindrical nanoshell and estimated through a nanomechanical model. For the first time in the current study is considering the effects of... 

    Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate

    , Article Thin-Walled Structures ; Volume 166 , 2021 ; 02638231 (ISSN) He, X ; Ding, J ; Habibi, M ; Safarpour, H ; Safarpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This survey addresses the non-polynomial framework for bending responses of three-phase multi-scale hybrid laminated nanocomposite (MHLNC) reinforced circular/annular plates (MHLNCRCP/ MHLNCRAP) based upon the three-dimensional theory of elasticity for various sets of boundary conditions. The sandwich structure with two, three, five, and seven layers is modeled using compatibility conditions. The state-space based differential quadrature method (SS-DQM) is presented to examine the bending behavior of MHLNCRCP/ MHLNCRAP by considering various boundary conditions. Halpin–Tsai equations and fiber micromechanics are used in the hierarchy to predict the bulk material properties of the multi-scale...