Loading...
Search for: biomechanics
0.008 seconds
Total 325 records

    Stiffness of knee-spanning external fixation systems for traumatic knee dislocations: A biomechanical study

    , Article Journal of Orthopaedic Trauma ; Volume 24, Issue 11 , Nov , 2010 , Pages 693-696 ; 08905339 (ISSN) Mercer, D ; Firoozbakhsh, K ; Prevost, M ; Mulkey, P ; Decoster, T. A ; Schenck, R ; Sharif University of Technology
    2010
    Abstract
    Objective: The purpose of this study was to compare the relative stiffness of four common external fixation (XF) configurations used to span and stabilize the knee after knee dislocation. Methods: Synthetic composite femora and tibiae connected with cords were used to simulate a knee. Four configurations of external fixation were tested: anterior femoral pins with monotube (XF1), anterolateral femoral pins with monotube (XF2), anterolateral femoral pins with two connecting rods (XF3), and hinged ring fixator (XF4). Six specimens of each configuration were loaded nondestructively in varus/valgus, anterior-to- posterior shear, flexion/extension, axial compression, internal/external torsion,... 

    Sagittal range of motion of the thoracic spine using standing digital radiography: A throughout comparison with non-radiographic data reviewed from the literature

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1307-1315 ; 10263098 (ISSN) Madinei, S ; Arjmand, N ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    Previous studies have measured thoracic Range of Motion (RoM) using either skin-mounted devices or supine CT-imaging and have reported on quite different RoMs. Given the inherent shortcomings of measurements of vertebrae movements from the overlying skin, the present study aims to measure normal RoM of the thoracic spine in the sagittal plane using the upright digital radiography. Lateral radiographs of the thoracic spine were obtained from eight asymptomatic male subjects in upright standing and full forward flexion using a mobile U-arm digital radiographic system. Total (T1-T12), upper (T1-T6), and lower (T6-T12) thoracic RoMs were measured. A throughout comparison of available skin-based... 

    Sagittal range of motion of the thoracic spine using standing digital radiography: A throughout comparison with non-radiographic data reviewed from the literature

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1307-1315 ; 10263098 (ISSN) Madinei, S. S ; Arjmand, N ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    Previous studies have measured thoracic Range of Motion (RoM) using either skin-mounted devices or supine CT-imaging and have reported on quite different RoMs. Given the inherent shortcomings of measurements of vertebrae movements from the overlying skin, the present study aims to measure normal RoM of the thoracic spine in the sagittal plane using the upright digital radiography. Lateral radiographs of the thoracic spine were obtained from eight asymptomatic male subjects in upright standing and full forward flexion using a mobile U-arm digital radiographic system. Total (T1-T12), upper (T1-T6), and lower (T6-T12) thoracic RoMs were measured. A throughout comparison of available skin-based... 

    Biomechanical effects of lumbar fusion surgery on adjacent segments using musculoskeletal models of the intact, degenerated and fused spine

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Ebrahimkhani, M ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Adjacent segment disorders are prevalent in patients following a spinal fusion surgery. Postoperative alterations in the adjacent segment biomechanics play a role in the etiology of these conditions. While experimental approaches fail to directly quantify spinal loads, previous modeling studies have numerous shortcomings when simulating the complex structures of the spine and the pre/postoperative mechanobiology of the patient. The biomechanical effects of the L4–L5 fusion surgery on muscle forces and adjacent segment kinetics (compression, shear, and moment) were investigated using a validated musculoskeletal model. The model was driven by in vivo kinematics for both preoperative (intact or... 

    Complexity and variability of the center of pressure time series during quiet standing in patients with knee osteoarthritis

    , Article Clinical Biomechanics ; Volume 32 , 2016 , Pages 280-285 ; 02680033 (ISSN) Negahban, H ; Sanjari, M. A ; Karimi, M ; Parnian Pour, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Background While several studies have investigated the traditional linear measures in patients with knee osteoarthritis, no study has yet reported the non-linear structure of postural sway in these patients. Methods We used two non-linear methods, recurrence quantification analysis (percent of determinism-%DET) and central tendency measure, to respectively investigate differences in the complexity and variability of sway dynamics between two groups of knee osteoarthritis patients (n = 27) and healthy controls (n = 27) under different conditions of postural and cognitive tasks. The experimental conditions included standing on (1) rigid surface with open eyes; (2) rigid surface with closed... 

    Mathematical and finite element modelling of spine to investigate the effects of intra-abdominal pressure and activation of muscles around abdomin on the spinal stability

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Mokhtarzadeh, H ; Farahmand, F ; Parninapour, M ; Malekipour, F ; Shirazi Adl, A ; Arjmand, N ; Sharif University of Technology
    2006
    Abstract
    In spite of the several experimental and modeling studies on the biomechanical characteristics of the human spine, the role and significance of the intra-abdominal pressure (IAP) in spine mechanics has remained controversial. This study represents a simple analytical and a 3-D finite element model of spine and its surrounding structures to investigate the contribution of IAP to spinal stability. The mathematical model included the lumbar spine column, the abdominal cavity and a muscular layer around it, the rib cage and the pelvic ring. The lumbar spine column was modeled as a beam and the rib cage and pelvis as rigid bodies. The intra-abdominal cavity and the surrounding muscular layer were... 

    Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals

    , Article Journal of Biomechanics ; Volume 123 , 2021 ; 00219290 (ISSN) Ghasemi, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Measurements of spinal segment ranges of motion (RoMs), movement coordination, and three-dimensional kinematics during occupational activities have implications in occupational/clinical biomechanics. Due to the large amount of adipose tissues, obese individuals may have different RoMs, lumbopelvic coordination, and kinematics than normal-weight ones. We aimed to measure/compare trunk, lumbar, and pelvis primary RoMs in all anatomical planes/directions, lumbopelvic ratios (lumbar to pelvis rotations at different trunk angles) in all anatomical planes/directions and three-dimensional spine kinematics during twelve symmetric/asymmetric statics load-handling activities in healthy normal-weight... 

    Subject-specific compressive tolerance estimates

    , Article Technology and Health Care ; Volume 11, Issue 3 , 2003 , Pages 183-193 ; 09287329 (ISSN) Davis, K. G ; Parnianpour, M ; Sharif University of Technology
    IOS Press  2003
    Abstract
    Spinal load models have become an increasingly valuable tool for the evaluation of the stress placed on the spine. In order to get an accurate representation of these spinal loads, they must be compared to known tolerance values. Bone mineral content and density of the lumbar spine of 23 males and 21 females was measured using a dual energy x-ray absorptiometry. Compression tolerance values were predicted by previously published studies based upon bone mineral levels. Anthropometric measurements were recorded and related to the compression tolerance values through the use of multivariate linear regression techniques. Compression tolerance values based on the bone mineral content or density... 

    Lumbopelvic rhythm during forward and backward sagittal trunk rotations: Combined in vivo measurement with inertial tracking device and biomechanical modeling

    , Article Clinical Biomechanics ; Vol. 29, issue. 1 , 2014 , pp. 7-13 ; ISSN: 02680033 Tafazzol, A ; Arjmand, N ; Shirazi-Adl, A ; Parnianpour, M ; Sharif University of Technology
    Abstract
    Background The ratio of total lumbar rotation over pelvic rotation (lumbopelvic rhythm) during trunk sagittal movement is essential to evaluate spinal loads and discriminate between low back pain and asymptomatic population. Methods Angular rotations of the pelvis and lumbar spine as well as their sagittal rhythm during forward flexion and backward extension in upright standing of eight asymptomatic males are measured using an inertial tracking device. The effect of variations in the lumbopelvic ratio during trunk flexion on spinal loads is quantified using a detailed musculoskeletal model. Findings The mean of peak voluntary flexion rotations of the thorax, pelvis, and lumbar was 121 (SD... 

    Monte Carlo simulation of spine geometry from T12 to sacrum in males

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 1 , 2010 , Pages 813-820 ; 9780791849156 (ISBN) Komeilizadeh, K ; Asghari, M ; Junno, J. A ; Parnianpour, M ; Sharif University of Technology
    2010
    Abstract
    In biomechanical modeling of spine, the prediction of spinal loading during occupational activities is crucial in assessment of the risk of low back pain and injury of spine. Current biomechanical models are based on the average data. Hence, they are unable to predict the effects of the observed natural anatomical variations on muscles moment arms and lines of action, while these variations ultimately influence the required muscular forces for balancing the external moments of any given task. In this work, a methodology based on the Monte Carlo technique has been developed to simulate spine geometry from T12 to S1 vertebrae for males. The lordosis of the assembled spine ranged between 21° to... 

    Rigid-bar loading on pregnant uterus and development of pregnant abdominal response corridor based on finite element biomechanical model

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 36, Issue 1 , January , 2020 Irannejad Parizi, M ; Ahmadian, M. T ; Mohammadi, H ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    During pregnancy, traumas can threaten maternal and fetal health. Various trauma effects on a pregnant uterus are little investigated. In the present study, a finite element model of a uterus along with a fetus, placenta, amniotic fluid, and two most effective ligament sets is developed. This model allows numerical evaluation of various loading on a pregnant uterus. The model geometry is developed based on CT-scan data and validated using anthropometric data. Applying Ogden hyper-elastic theory, material properties of uterine wall and placenta are developed. After simulating the “rigid-bar” abdominal loading, the impact force and abdominal penetration are investigated. Findings are compared... 

    A comprehensive evaluation of spine kinematics, kinetics, and trunk muscle activities during fatigue-induced repetitive lifting

    , Article Human Factors ; Volume 64, Issue 6 , 2022 , Pages 997-1012 ; 00187208 (ISSN) Kazemi, Z ; Mazloumi, A ; Arjmand, N ; Keihani, A ; Karimi, Z ; Ghasemi, M. S ; Kordi, R ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    Objective: Spine kinematics, kinetics, and trunk muscle activities were evaluated during different stages of a fatigue-induced symmetric lifting task over time. Background: Due to neuromuscular adaptations, postural behaviors of workers during lifting tasks are affected by fatigue. Comprehensive aspects of these adaptations remain to be investigated. Method: Eighteen volunteers repeatedly lifted a box until perceived exhaustion. Body center of mass (CoM), trunk and box kinematics, and feet center of pressure (CoP) were estimated by a motion capture system and force-plate. Electromyographic (EMG) signals of trunk/abdominal muscles were assessed using linear and nonlinear approaches. The L5-S1... 

    Adjacent segments biomechanics following lumbar fusion surgery: a musculoskeletal finite element model study

    , Article European Spine Journal ; Volume 31, Issue 7 , 2022 , Pages 1630-1639 ; 09406719 (ISSN) Ebrahimkhani, M ; Arjmand, N ; Shirazi-Adl, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Purpose: This study exploits a novel musculoskeletal finite element (MS-FE) spine model to evaluate the post-fusion (L4–L5) alterations in adjacent segment kinetics. Methods: Unlike the existing MS models with idealized representation of spinal joints, this model predicts stress/strain distributions in all passive tissues while organically coupled to a MS model. This generic (in terms of musculature and material properties) model uses population-based in vivo vertebral sagittal rotations, gravity loads, and an optimization algorithm to calculate muscle forces. Simulations represent individuals with an intact L4–L5, a preoperative severely degenerated L4–L5 (by reducing the disc height by ~... 

    Effects of plate contouring quality on the biomechanical performance of high tibial osteotomy fixation: A parametric finite element study

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 236, Issue 3 , 2022 , Pages 356-366 ; 09544119 (ISSN) Hayatbakhsh, Z ; Farahmand, F ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Locking plates have threaded holes, in which threaded-head screws are affixed. Hence, they do not need to be in intimate contact with underlying bone to provide fixation. There are, however, reports that a large distance between the plate and the bone might cause clinical complications such as delayed union or nonunion, screw pull out, and screw and plate breakage. Considering the diversity in the capabilities and costs of different plate customization techniques, the purpose of this study was to investigate the effect of the plate contouring quality on the biomechanical performance of high tibial osteotomy (HTO) fixation. A finite element model of proximal tibia was developed in Abaqus,... 

    Biomechanical Modeling of Human Eye in Blunt Impact: A Finite Element Study

    , M.Sc. Thesis Sharif University of Technology Rahmannia, Saeed (Author) ; Ahmadian, Mohammad taghi (Supervisor) ; Fallah Rajabzadeh, Famida (Co-Advisor)
    Abstract
    Nowadays, Eye injuries caused by blunt impacts are considered among the major causes of blindness and vision problems; therefore, studying the existence of possible damages can be quite useful and effective. One of the quickest and most suitable methods in identifying damage parameters is finite-element modeling of the human eye. In this regard, in the current study, first a geometrical design was created by incorporating CT-Scan images of the eye into Mimics and later Solid works software. Afterwards, the most suitable mechanical properties for the constituents of the eye were extracted from the literature. The mechanical properties of vitreous and Sclera were obtained by experimental... 

    Sagittal Range of Motion of the Thoracic Spine Using Inertial Tracking Device and Effect of Measurement Errors on Model Predictions

    , M.Sc. Thesis Sharif University of Technology Hajibozorgi, Mahdieh (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Range of motion (ROM) of the thoracic spine has implications in patient discrimination for diagnostic purposes and in biomechanical models for predictions of spinal loads. Few previous studies have reported quite different thoracic ROMs. Total (T1-T12), lower (T5-T12) and upper (T1-T5) thoracic, lumbar (T12-S1), pelvis, and entire trunk (T1) ROMs were measured using an inertial tracking device as asymptomatic subjects flexed forward from their neutral upright position to full forward flexion. Correlations between body height and the ROMs were conducted. Effect of measurement errors of the trunk flexion (T1) on the model-predicted spinal loads was investigated. Mean of peak voluntary total... 

    A Detailed Finite Element Model of the Lumbar Spine under Muscle Forces

    , M.Sc. Thesis Sharif University of Technology Asadi, Hamed (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Etiological studies proves the fact that Low Back Pain (LBP) is one of the most expensive and prevalent desease all over the world. This fact illustrates the reqiurment of the special effort in ordet to reducing the pain due to this problem. Finite element modeling of human spine is one the suitable methods to simulate the behavior of human spine in different loading conditions. These conditions could be different daily occupational tasks. There is two general viewpoint toward finite element modeling of human spine. The fisrt method focuses on the detailed geometry and mechanical properties of spine, while the other complexities such as detailed muscle forces are overlooked. The latter... 

    Effect of Iatrogenic Muscle Injuries on Spine Biomechanics During Posterior Lumbar Surgeries Using a Biomechanical Model for Design of Rehabilitation Exercises

    , M.Sc. Thesis Sharif University of Technology Jamshidnezhad, Saman (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Posterior lumbar surgery is often associated with extensive injuries to back muscles. In this thesis, the effect of such iatrogenic injuries in some patients was examined. For this purpose, the CSA of back muscles in 6 patients were measured using MR scan. To examine any natural change in CSAs of healthy people or instrument errors, same measurement were carried out on 10 healthy volunteers. In addition, a detailed anatomical model of an intact human spine was developed. With the aim of experimental studies and intact model, the post-operative model of patients was also developed. These two models were used to quantizing the change in activity of back muscles during some symmetric, normal... 

    Elastic Analysis of Brazilian Test of Transversely Isotropic Material

    , M.Sc. Thesis Sharif University of Technology Farajpour Niri, Farid (Author) ; Eskandari, Morteza (Supervisor)
    Abstract
    In Former research we determinate elastic response of Brazilian Test of transversely Isotropic material . In Bio-mechanic science surveying mechanical properties and modeling biological organ such as bone , tooth and bio-material such as titanium, zirconium with application in joint replacement is very important . One of method to determine properties of bio-material which mostly has transversely Isotropic behavior is Brazilian Test. Also most rocks has transversely Isotropic behavior, so choosing efficient test is so important. In current issue , load apply in limited area and it is also considered friction in area of jaw loading area .By use of displacement potential function ... 

    Effects of Low Back Pain and Posterior Lumbar Surgery on Pattern of Muscle Activities, Trunk Strength and Spinal Stability

    , M.Sc. Thesis Sharif University of Technology Ghiasi, Mohammad Sadegh (Author) ; Farahmand, Farzam (Supervisor) ; Arjmand, Navid (Co-Advisor)
    Abstract
    80% of people in all over the world, experience Low Back Pain (LBP) once in their lives. LBP leads to dysfunction of spine. About 25% of LBP relates to the intervertebral disks which in the critical cases, a Posterior Lumbar Surgery (PLS) on the one or more lumbar disks should be done. Due to the some procedure such as retracting, cutting or denervation of muscles, PLS can hurt trunk muscles and spine. Thus, investigation of LBP and postoperative complications of PLS can help us in recognition of causes of LBP and PLS complications and modification of PLS approaches. The objective of this research was investigation of effects of LBP and PLS on the biomechanical function of spine. Pattern of...