Loading...
Search for: hasanvandian--farzad
0.115 seconds

    Control of Quasi-Resonant Converters Using Model Predictive Control

    , M.Sc. Thesis Sharif University of Technology Ebad, Mehdi (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    DC-DC switching convertors are power electronic circuits that have various applications nowadays. Quasi-resonant convertors are a kind of these convertors that are of great interest due to their simple structure and soft switching. The goal of controlling these convertors is to achieve constant output voltage while varying the input voltage and the load by choosing a proper switching frequency. Classic controllers show drawbacks in the case of high input voltage and load tolerance, and this nonlinear behavior of the systems results in some practical challenges. In this thesis, nonlinear predictive controller for quasi-resonant Buck convertors is designed. Having designed the linear... 

    Design of Electrical Drive for Steer-by-Wire Systems

    , M.Sc. Thesis Sharif University of Technology Afshang, Hamid (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Hydraulic steering technology has been used in vehicles for decades. Recently, a trend has been seen towards the use of electronic steer-by-wire systems that provide greater design flexibility by customizing the connection between the steering wheel and the steering mechanism. Steer-by-Wire systems (SbW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. The task of a SbW system is two-fold: turning the steered wheels by tracking the hand wheel (HW) rotation and... 

    Control of Quasi-Resonant Converters Using Multiple Model Fusion

    , M.Sc. Thesis Sharif University of Technology Nejadpak, Aarsh (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Nowadays, power electronics converters with pulse width modulation (PWM) are widely used in different power circuits. Operation of semi-conductive switches during on and off conditions causes switching dissipation and consequently decreases the efficiency of the PWMs. Recently, by increasing the required power for power electronics applications, quasi-resonant converters attract attentions. Quasi-resonant converters, by adding resonant circuits to the PWM converters causes the soft switching operation (switching with zero current or voltage) and decreases the energy loss. In conventional control methods of these converters, the nonlinear average circuit model is linearized around the... 

    Direct Torque Control of Permanent Magnet Synchronous Machine Using Nonlinear Flux Observer

    , M.Sc. Thesis Sharif University of Technology Yaghoubi, Mokhtar (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Direct Torque Control (DTC) is one of the vector methods to control Permanent Magnet Synchronous Machines (PMSM). In order to achieve an appropriate control in vector control methods, an accurate estimation of flux is indispensable. Flux estimation should be fulfilled in a wide speed range without considerable dependence on motor parameters. Prevalent flux estimation methods are based on integration of stator voltage which is not feasible in low speed, or performed based on assumption of decoupled equations on d and q axis which is not precise for applications with fast dynamic. Different flux estimation methods are investigated in this thesis with the aim of improving the flux estimation in... 

    Control of Three-phase UPS with Nonlinear Load Using Disturbance Observer Considering Transformer Concerns

    , M.Sc. Thesis Sharif University of Technology Shahriari, Zohair (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Nowadays, non-linear loads comprise an important part of electrical grids. One of the most essential sources of nonlinear loads is switching power supplies, which mainly include power electronic rectifiers. When power outage occurs, Uninterruptible Power Supplies (UPS) must be able to supply these loads. The nonlinearity of the load has a significant effect on the Total Harmonic Distortion (THD) of the output voltage, which may not be easily reduced, especially in three-phase inverters. Furthermore, the presence of isolating transformers in these power supplies limits the control of harmonics and intensifies the nonlinear effects of the system.In this Master Thesis, a disturbance observer is... 

    Hybrid Modeling and Control of DC-DC Series Resonant Converters for Applications of Wide Range Power

    , Ph.D. Dissertation Sharif University of Technology Afshang, Hamid (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    The subject of control and stabilization of dc-dc series resonant converter (SRC) is still a challenge in power electronics. The conventional controller design and stability analysis for this converter are based on the model which is derived using the sinusoidal approximation and averaging followed by linearization about an operating point. This model is not applicable to a SRC that operates below resonance especially in discontinuous conduction mode (DCM) because the sinusoidal approximation is no longer acceptable. However, a SRC may be purposely designed to operate in DCM. Therefore, it is essential to investigate the stability analysis and controller design using a more sophisticated... 

    Direct Speed Control of Permenant Magnet Synchronous Machine

    , M.Sc. Thesis Sharif University of Technology Dana, Shekoofe (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Accurate and fast position controlling is an important issue in today’s industrial needs. Drives used for position control require fast dynamics on speed control. Cascade linear controllers have sluggish response due to bandwidth limitations on speed and current loop. These structures limit the dynamics above all in high power applications where the switching frequency is low. In this thesis, deadbeat direct speed control is proposed, which overcomes limitations by cascade loops resulting in high-speed control dynamics. This approach uses a model of the plant to generate the control signals. According to measured speed and currents, the controller specifies the best voltage vector in order... 

    Wireless Power Transfer System Design using Selected Harmonic for Electric Vehicle Charging

    , Ph.D. Dissertation Sharif University of Technology Moradi, Adel (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Long lasting portable power is an ultimate desire for electronic devices. The limited capacity of the batteries in addition to the heavy weight and extra costs are the main challenges of the batteries for energy storage in large electrical devices like electric vehicles. Wireless Power Transmission (WPT) technology can address these issues by providing online electric power for these portable devices. Furthermore, this technology can supply electric devices especially portable ones by eliminating cables and connectors with more reliability.The current research is focused on optimum design of the wireless power transfer system for electric vehicle charging applications. The optimization of... 

    Modeling and Control of LLC Resonant Converter Based on Theories of Hybrid Systems

    , M.Sc. Thesis Sharif University of Technology Barzkar, Ashkan (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    In comparison to pulse width modulation (PWM) converters, the ability of soft switch-ing enables resonant converters to operate at high frequencies, as the result of which these converters enjoy high efficiency, high power density, and low electromagnetic interference (EMI). Among resonant tank topologies, the LLC resonant tank is a very desirable structure, as the LLC resonant converter can operate in boost mode and properly regulate the output voltage under light loads and despite large variations in the input voltage and/or the load. However, there are major modeling issues with resonant converters, since conventional modeling approaches cannot properly model fast dynamics of these... 

    Design and Implementation of a High-Efficient High-Power-Density Telecom Battery Charger using Planar Matrix Transformers

    , M.Sc. Thesis Sharif University of Technology Nazerian, Emad (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    In creating a telecom battery charger there are three challenging factors which are high power density, high efficiency and modularity. A telecome battery charger consist of a rectifier with power factor correction capability and a DC-DC converter. The power stage of DC-DC converter with high output current and low output voltage has a vital role in the battery charger. The isolation transformer and magnetic component of LLC resonant tank are two huge and heavy parts of the DC-DC converter. With the emergence of GaN and SiC switches pushing frequency to to megahertz is possible which resulted in decreasing the volume of passive divices. But with increasing the frequency, designing of the... 

    Design of Soft-Switching Inverter Using Wide Bandgap Transistors for Electric Vehicle

    , M.Sc. Thesis Sharif University of Technology Elyasi, Bijan (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    The electric vehicle inverter, as one of the most important components of the vehicle, needs to have a high efficiency and also be able to work at high temperatures. Due to passing a large part of the battery power through this part and being one of the components that has the biggest power in an electric vehicle , traction inverter Efficiency has a big impact on the total efficiency of the whole vehicle . By increasing the battery voltage of electric vehicles, in order to achieve a higher charging power, the electric vehicle inverter must be able to withstand a voltage of about 800 volts input .On the other hand, in electric car inverters, the goal is to reach a power density of 100kw / L.... 

    Design and Implementation of a Soft-Switched Multiport Bidirectional Converter

    , M.Sc. Thesis Sharif University of Technology Mirzahosseini, Ramin (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    In recent years, multiport bidirectional converters have been a center of attention in renewable energy systems. This research focuses on three-port bidirectional converters. First, series resonant bidirectional converter is precisely analyzed. This analysis includes sinusoidal, exact state space and small signal analysis through phasor concept. This converter can work in higher switching frequencies and higher power ratings in comparison with common DAB bidirectional converter due to its inductor impedance cancellation. To increase power rating a three-phase version is proposed which has reduced output filter capacitance. Then, three-port bidirectional resonant converter is proposed and... 

    Design and Implementation of a Soft Switched Bidirectional Charger for Vehicle-to-grid (V2G) Applications

    , M.Sc. Thesis Sharif University of Technology Akbari, Rasoul (Author) ; Tahami, farzad (Supervisor)
    Abstract
    Due to the growing oil price and environmental considerations, tendency to use local and environmentally friendly energy sources has increased.Bidirectional transmission can be one of the key features of the smart grid,so the use of car battery connected to the grid as local energy sources makes sense. This can provide network stability, especially during peak load times. Vehicles connected to grid (V2G) is an electric vehicle or a plug-in hybrid electric vehicles can delivered the electricity to the grid. These systems require either two separate power electronic converters can be used for transmission in either directions or a two-way transfer charger. The aim of this project is to design... 

    Design and Implementation of High Efficient Charger for Plug-in Hybrid Vehicles with Power Factor Correction Feature

    , M.Sc. Thesis Sharif University of Technology Yazdani, Farzad (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    In this project the novel zero-voltage-switching topology for power factor correction bridgeless boost rectifier is proposed. By employing an improved ZVS pulse-width-modulation (PWM) switch cell, ZVS of all the main switches is achieved without additional current or voltage stress of main switches. Also for the auxiliary switch the zero-current-switching is provided. In all modes of opretion of this converter, the power path is provided by maximum two semiconductor so the conduction loss of converter is low as in conventional converter. With this features the efficiency of proposed converter is very high  

    Modeling topological characteristics of BitTorrent-like peer-to-peer networks

    , Article IEEE Communications Letters ; Volume 15, Issue 8 , August , 2011 , Pages 896-898 ; 10897798 (ISSN) Farzad, A ; Rabiee, H. R ; Sharif University of Technology
    2011
    Abstract
    This letter presents a complex network model for the BitTorrent; the most popular peer-to-peer network. Three important topological characteristics; (i) degree distribution, (ii) clustering coefficient and (iii) average path length of this network are analytically modeled. The analytical computations are confirmed by simulations. Moreover, the accuracy of the proposed model was confirmed by exploiting a BitTorrent simulator  

    Power Electronic Converter Design for Wireless Power Transfer Using for Selective Harmonic

    , M.Sc. Thesis Sharif University of Technology Mahdavifard, Morteza (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Wireless power transfer provides many medical applications. Recently, power electronic devices are available with high power transmission capability at higher frequencies. This makes it possible to transfer wireless power with considerable amount of power. Due to the reductions of battery size and cost with using wireless power transfer system, this technology is introduced as one of the most interesting topics among researchers. There are obstacles in front of the progressing wireless power transfer applications. Lateral misalignment, load variations, component uncertainties in value are common in wireless power transfer applications. In order to bring this application in large scales, all... 

    Low Cost Sensor-Less Control of Permanent Magnet Synchronous Motor for Home Appliances

    , M.Sc. Thesis Sharif University of Technology Hosseinyar, Hossein (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Proper operation of a permanent magnet synchronous motor (PMSM) requires rotor position information. Commonly a rotor position sensor, such as optical encoder or resolver, is used for this purpose. These sensors add cost, weight and degrade reliability of the drive system. Using position and speed sensors for control of PMSM’s in home appliances is not cost effective. In this thesis, a novel method for predicting position of the rotor and winding inductance of the permanent magnet synchronous machine has been presented. In this method, machine anisotropy is utilized for rotor position estimation purposes like what in the high frequency injection techniques. Each leg of the PWM inverter... 

    Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Hasanvandian, F ; Shokri, A ; Moradi, M ; Kakavandi, B ; Rahman Setayesh, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, spinel CuCo2O4 (CCO) with a hierarchical hollow sphere morphology was encapsulated in V2O5-decorated ultra-wrinkled graphitic carbon-nitride (VO-UCN) for the first time via a facile glycerol-assisted solvothermal method in the interest of developing a novel high-efficiency double Z-type nano-photocatalyst (denoted as VO-UCN@CCO). The remarkable physicochemical features of the as-prepared nano-photocatalysts were verified using diverse characterization techniques including TGA, XRD, FT-IR, FE-SEM, TEM, BET, UV–vis DRS, PL, EIS, and transient photocurrent techniques. Herein, VO-UCN@CCO nanocomposite was employed for the photodisintegration of levofloxacin (LVOF) antibiotic under... 

    Photocatalytic Degradation of Organic Pollutants in the Presence of Nanocomposites Based on Graphitic Carbon Nitride under Visible Light Illumination

    , M.Sc. Thesis Sharif University of Technology Hasanvandian, Farzad (Author) ; Hamzehlouyan, Tayebeh (Supervisor) ; Rahman Setayesh, Shahrbanoo (Co-Supervisor)
    Abstract
    The susceptible light-harvesting and tremendous reduction capability along with the potentiality (photo)electrochemical merits of the thiospinels like CuCo2S4 (CCS) bring forth appreciably an advancement in efficacious photocatalytic reactions. However, scant oxidation potential originated from 3p orbitals of sulfur atoms puts a damper on their performance and is even conducive to self-oxidation. In this research, the surfactant/template free of hierarchical CCS thiospinels was synthesized using solvothermal sulfidation of the affordable glycerate-based CuCo-alkoxide and successfully was embedded with Z-scheme V2O5 deposited on wrinkled g-C3N4 lamella (VO-UCN) in the interest of developing... 

    Analysis and Design of Predictive Control Strategy for Sheppard-Taylor Based PFC Rectifier

    , M.Sc. Thesis Sharif University of Technology Abedi, Mohammad Reza (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    In this thesis CCM/CVM operation and modeling of the Sheppard-Taylor topology is reviewed and a predictive control strategy is applied for a Sheppard-Taylor-based power factor correction (PFC) rectifier. Compared to conventional boost or buck boost PFC’s, this topology allows a better current tracking at the AC side, with a relatively reduced voltage at the DC side. Consequently, the high frequency AC filters required by the buck PFCs are avoided, and the voltage stresses on the boost switches are significantly reduced. Furthermore In predictive control strategy the duty cycle required to achieve unity power factor in a half line period can be calculated in advance. The main advantage of...