Loading...
Search for: saidi--m--h
0.152 seconds

    A simple one-pot three-component reaction for preparation of secondary amines and amino esters mediated by lithium perchlorate

    , Article Tetrahedron ; Volume 57, Issue 31 , 2001 , Pages 6829-6832 ; 00404020 (ISSN) Saidi, M. R ; Azizi, N ; Zali Boinee, H ; Sharif University of Technology
    2001
    Abstract
    The one-pot synthesis of several secondary amines and secondary amino esters are reported. Treatment of aldehydes (aliphatic or aromatic) with (trimethylsilyl)alkylamines, in the presence of 5 M lithium perchlorate in diethyl ether gives intermediate imines. Reaction of these intermediate imines with different nucleophiles and functionalized organozinc reagents, BrZnCH2COOR, produce a variety of secondary amines and N-alkyl- or N-arylamino esters in good yields. © 2001 Elsevier Science Ltd. All rights reserved  

    Second law analysis for extended graetz problem including viscous dissipation in microtubes

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, Montreal, QC, 1 August 2010 through 5 August 2010 ; Issue PARTS A AND B , 2010 , Pages 503-514 ; 9780791854501 (ISBN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Fluids Engineering Division ; Sharif University of Technology
    2010
    Abstract
    The entropy generation rate has become a useful tool for evaluating the intrinsic irreversibilities associated with a given process or device. This work presents an analytical solution for entropy generation in hydrodynamically fully developed thermally developing laminar flow in a microtube. The rarefaction effects as well as viscous heating effects are taken into consideration, but axial conduction is neglected. Using fully developed velocity profile, the energy equation is solved by means of integral transform. The solution is validated by comparing the local Nusselt numbers against existing literature data. From the results it is realized that the entropy generation decreases as Knudsen... 

    Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels

    , Article Microfluidics and Nanofluidics ; Volume 20, Issue 8 , 2016 ; 16134982 (ISSN) Reshadi, M ; Saidi, M. H ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    The secondary flow of PTT fluids in rectangular cross-sectional plane of microchannels under combined effects of electroosmotic and pressure driving forces is the subject of the present study. Employing second-order central finite difference method in a very refined grid network, we investigate the effect of electrokinetic and geometric parameters on the pattern, strength and the average of the secondary flow. In this regard, we try to illustrate the deformations of recirculating vortices due to change in the dimensionless Debye–Hückel and zeta potential parameters as well as channel aspect ratio. We demonstrate that, in the presence of thick electric double layers, significant alteration... 

    Numerical simulation of soot formation in a JP combustor using different surrogate fuels

    , Article 2018 Joint Thermophysics and Heat Transfer Conference, 25 June 2018 through 29 June 2018 ; 2018 ; 9781624105524 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Saidi, M. H ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2018
    Abstract
    As is known, jet propulsion fuels are rather complex with combustion resulting in a vast range of chemical compounds. So, their real modeling is rather hard and the application of final constructed models is restricted to a narrow band of real propulsion jet fuels. The main objective of this study is to extend suitable surrogate fuel models to reliably predict the combustion and soot characteristics of the equivalent jet propulsion fuel. In this regard, the combustion of proposed surrogate fuels is numerically studied in the above chosen combustion chamber. Of importance, the surrogate fuels should be proposed suitably to represent the correct physical characteristics and the real chemical... 

    Analysis of smoke-aerosol formation in pressurized turbulent kerosene/air flames using different soot models

    , Article 47th AIAA Thermophysics Conference, 2017, 5 June 2017 through 9 June 2017 ; 2017 ; 9781624104992 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Saidi, M. H ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2017
    Abstract
    This study examines different soot sub-models to simulate the soot nano-aerosol formation in turbulent kerosene-surrogate flames. The examinations are carried out at three different elevated pressures. We use a two-equation soot model considering the aerosol dynamics and chemistry of soot nano-particles, i.e. nucleation, coagulation, surface growth, and oxidation. Four different soot sub-models are used to predict the structures of pressurized flames. These structures are then compared with each other as well as the data collected by experiment. Our findings indicate that the acetylene soot-inception sub-model performs poorly in prediction of the flames’ structures at different elevated... 

    Numerical study of soot nano-aerosol formation in a JP combustor embedded with a mini-scale air-distributor

    , Article 23rd AIAA Computational Fluid Dynamics Conference, 2017, 5 June 2017 through 9 June 2017 ; 2017 ; 9781624105067 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Saidi, M. H ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2017
    Abstract
    The main objective of this work is to investigate the effects of using a miniature or mini-scale air-distributor on the formation of soot nano-particles in a gas turbine combustor burning the jet propellant JP. To evaluate the achieved numerical predictions, it is necessary to choose a test case with available experimental data. It helps to compare the predicted flame structure with that of measurement. After the validation step, the chosen combustor configuration is modified to an inverse non-premixed flame configuration. This helps to split the incoming air between the primary and secondary air streams and to inject the primary air into the inverse flame via a primary air injector.... 

    Fluctuation of air-water two-phase flow in horizontal and inclined water pipelines

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 129, Issue 1 , 2007 , Pages 1-14 ; 00982202 (ISSN) Kabiri Samani, A. R ; Borghei, S. M ; Saidi, M. H ; Sharif University of Technology
    2007
    Abstract
    Air in water flow is a frequent phenomenon in hydraulic structures. The main reason for air entrainment is vortices at water intakes, pumping stations, tunnel inlets, and so on. The accumulated air, in a conduit, can evolve to a different flow pattern, from stratified to pressurized. Among different patterns, slug is most complex with extreme pressure variations. Due to lack of firm relations between pressure and influential parameters, study of slug flow is very important. Based on an experimental model, pressure fluctuations inside a circular, horizontal, and inclined pipe (90 mm inside diameter and 10 m long) carrying tow-phase air-water slug flow has been studied. Pressure fluctuations... 

    Separation of microparticles suspended in a minichannel using laser radiation pressure

    , Article Applied Optics ; Volume 52, Issue 20 , 2013 , Pages 4950-4958 ; 1559128X (ISSN) Zabetian, M ; Saidi, M.S ; Shafii, M. B ; Saidi, M. H ; Sharif University of Technology
    Optical Society of American (OSA)  2013
    Abstract
    Optical separation, which is a contactless and accurate technique, has been mostly used to manipulate single particles. This work mainly aims to present an effective technique for optical propulsion and separation of a group of microscopic particles that are suspended in liquids. An experimental study is conducted to assess the effect of radiation pressure of a high-power laser on a dilute dispersion of microparticles in water using microscopic image analysis. Results of separation experiments indicate that the manipulation mechanism is capable of sorting the microscopic particles in two size classes. Compared to common optical separators, this configuration has a benefit of separating many... 

    Experimental characterization of stabilized suspensions caused by formation of nanoparticle halos

    , Article ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2014, Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting ; 2014 ; ISBN: 9780791846278 Keramati, H ; Zabetian, M ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    2014
    Abstract
    Suspension flow has an important role in various applications such as paint, material and pharmaceutical industries. Settling is considered as a resisting phenomenon in the processes dealing with suspensions. Using nanoparticles as an additive to micro-particulates has been studied in limited studies. This work presents an experimental investigation to assess the effectiveness of nanoparticles in reduction of suspension settling. Microscopic imaging and transmission measurement were used to analyze the stability factors in a container. Transmission analysis revealed that presence of nanoparticles in the suspension, decreased the sedimentation rate. Microscopy showed that the settling rate... 

    Entrapped air in long water tunnels during transition from a pressurized to free-surface flow regime

    , Article Scientia Iranica ; Volume 13, Issue 2 , 2006 , Pages 174-186 ; 10263098 (ISSN) Kabiri Samani, A. R ; Borghei, S. M ; Saidi, M. H ; Sharif University of Technology
    Sharif University of Technology  2006
    Abstract
    Air-water two-phase flow usually occurs during a sudden rise in water level at a tunnel or during the falling of the water level at an upstream reservoir while entering the conduit. When this happens, different flow patterns are generated, due to the hydraulics of flow and fluid properties. An analytical/numerical model, based on the assumption of a rigid incompressible water column and a compressible air bubble, is derived, to simulate pressure fluctuation, void fraction, air/water flow rate and water velocity in a closed conduit, including water depth at the upper reservoir, due to air bubbles becoming trapped in the water, for the highest possible number of flow patterns. It is a... 

    Improvement of airlift pump performance based on the exergy analysis

    , Article Proceedings of the 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010, 14 June 2010 through 17 June 2010, Lausanne ; Volume 1 , 2010 , Pages 489-497 ; 9781456303006 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Gholampour, P ; Shams, H ; Saidi, M. H ; Sharif University of Technology
    Aabo Akademi University  2010
    Abstract
    Airlift systems (ALS) are widely used in various fields such as petroleum and oil extracting industries. As gas-liquid two phase flow is the main part of the flow through these systems, the analysis of such systems accompanies with problems of two phase flow modeling. However, exergy analysis could be a simple method for modeling of airlift systems. In the present study, an analytical model based on thermodynamic principles has been implemented on each phase to analyze the performance of airlift systems. The experimental data were collected at a large scale multiphase flow test rig for the airlift pump with 6m height and diameter of 50 mm. Finally, irreversibility terms, energy destruction,... 

    Letter to “a contribution to the understanding of isothermal diesel spray dynamics”

    , Article Fuel ; Volume 187 , 2017 , Pages 468-469 ; 00162361 (ISSN) Ghahremani, A. R ; Karimi, H ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    2017

    Thermal performance of an open loop pulsating heat pipe with ferrofluid (Magnetic Nano-Fluid)

    , Article ASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012 ; 2012 , Pages 185-190 ; 9780791854778 (ISBN) Taslimifar, M ; Mohammadi, M ; Saidi, M. H ; Afshin, H ; Shafii, M. B ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2012
    Abstract
    In the present research an experimental investigation is performed to explore the effects of working fluid, heat input, ferrofluid concentration, magnets location, and inclination angle on the thermal performance of an Open Loop Pulsating Heat Pipe (OLPHP). Obtained results show that using ferrofluid can improve the thermal performance and applying a magnetic field on the water based ferrofluid decreases the thermal resistance. It shows that at an inclination angle of the OLPHP to be zero, the thermal performance of the present OLPHP reduces. Best heat transfer capability was achieved at 67.5 degree relative to horizontal axis for all of working fluids. Variation of the magnets location... 

    Ferrofluidic open loop pulsating heat pipes: Efficient candidates for thermal management of electronics

    , Article Experimental Heat Transfer ; Vol. 27, issue. 3 , Dec , 2014 , p. 296-312 ; ISSN: 08916152 Mohammadi, M ; Taslimifar, M ; Saidi, M. H ; Shafii, M. B ; Afshin, H ; Hannani, S. K ; Sharif University of Technology
    2014
    Abstract
    Thermal management of electronic devices is presently a serious concern. This article investigates the thermal performance of a five-turn open-loop pulsating heat pipe in both start-up and steady thermal conditions. The effects of working fluid, namely water and ferrofluid, heat input, charging ratio, ferrofluid concentration, orientation, as well as application of magnetic field, are explored. Experimental results show that using ferrofluid enhances the thermal performance in comparison with the case of distilled water under certain conditions. In addition, applying a magnetic field on the open-loop pulsating heat pipe charged with ferrofluid improves its thermal performance. Charging... 

    Investigation and visualization of surfactant effect on flow pattern and performance of pulsating heat pipe

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 139, Issue 3 , 2020 , Pages 2099-2107 Gandomkar, A ; Kalan, K ; Vandadi, M ; Shafii, M. B ; Saidi, M. H ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    Pulsating heat pipes (PHPs) are one of the new devices used for cooling in several applications such as electronic and aerospace systems. Their low cost, effectiveness at various conditions, being equipped for passive energy conversion, and well distribution of temperature compared to conventional heat pipes are among the reasons of their popularity. To investigate the effect of surface tension of the working fluid on the behavior of PHPs, a copper heat pipe is fabricated with inner and outer diameters of 2 mm and 4 mm, respectively. Five different concentrations of cetrimonium bromide (C-Tab) surfactant are dissolved in water and are tested with a filling ratio of 50% (± 1%). A piece of... 

    Two-dimensional numerical investigation of a micro combustor

    , Article Scientia Iranica ; Volume 17, Issue 6 B , December , 2010 , Pages 433-442 ; 10263098 (ISSN) Irani Rahaghi, A ; Saidi, M. S ; Saidi, M. H ; Shafii, M. B ; Sharif University of Technology
    2010
    Abstract
    In this paper, a two-dimensional numerical approach is used to study the effect of micro combustor height, mass flow rate and external convection heat transfer coefficient on the temperature and species mass fraction profiles. A premixed mixture of H2-Air with a multi-step chemistry is used. The transient gas phase energy and species conservation equations result in an Advection-Diffusion-Reaction system that leads to two stiff systems of PDEs. In the present work, the computational domain is solved through the Strang splitting method, which is suitable for a nonlinear stiff system of PDEs. A revised boundary condition for the velocity equation is applied and its effect on the flow... 

    Electrokinetically driven fluidic transport of power-law fluids in rectangular microchannels

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 414 , 2012 , Pages 440-456 ; 09277757 (ISSN) Vakili, M. A ; Sadeghi, A ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Electroosmosis is the predominant mechanism for flow generation in lab-on-chip devices. Since most biofluids encountered in these devices are considered to be non-Newtonian, it is vital to study the flow characteristics of common non-Newtonian models under electroosmotic body force. In this paper, the hydrodynamically fully developed electroosmotic flow of power-law fluids in rectangular microchannels is analyzed. The electrical potential and momentum equations are numerically solved through a finite difference procedure for a non-uniform grid. A thoroughgoing parametric study reveals that the Poiseuille number is an increasing function of the channel aspect ratio, the zeta potential, the... 

    Thermo-hydrodynamic modeling of a single bubble nozzle-diffuser phase change micropump

    , Article 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, Darmstadt, 23 June 2008 through 25 June 2008 ; Issue PART B , June , 2008 , Pages 1237-1243 ; 0791848345 (ISBN); 9780791848340 (ISBN) Saidi, M. S ; Saeedi, M. H ; Pirouzpanah, S ; Nikparto, A ; ASME ; Sharif University of Technology
    2008
    Abstract
    Nowadays, the potential of phase change process in liquids at micro scale attracts the scientists to fabricate this type of micropumps. Such micropumps have widely found applications in industrial and medical equipments such as recent printers. Not using mechanical parts such as valves, and having small sizes and high and controllable mass flow rates are the advantages of these micropumps. In the nozzle diffuser phase change micropump a heat pulse generates a bubble in a chamber; therefore, the pressure pulse which is generated by the bubble, causes the bubble to expand suddenly with high rate, then the pressure of bubble reduces to the vapor pressure and causes negative rate of expansion to... 

    Combined influences of viscous dissipation, non-uniform Joule heating and variable thermophysical properties on convective heat transfer in microtubes

    , Article International Journal of Heat and Mass Transfer ; Volume 55, Issue 4 , January , 2012 , Pages 762-772 ; 00179310 (ISSN) Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    2012
    Abstract
    This study presents a comprehensive investigation on hydrodynamic and thermal transport properties of mixed electroosmotically and pressure driven flow in microtubes. Particular emphasis is given to investigating the combined consequences of viscous dissipation, non-uniform Joule heating, and variable thermophysical properties. Analytical solutions are obtained using the Debye-Hückel linearization and constant fluid properties assumption, while a numerical solution is presented for variable fluid properties and non-uniform distribution of Joule heating. The results indicate that, viscous heating effect is pronounced significantly when a favorable pressure gradient exists and cannot be... 

    Comparative investigation of low and high frequency pulse tube regenerators

    , Article Scientia Iranica ; Volume 18, Issue 2 B , April , 2011 , Pages 205-212 ; 10263098 (ISSN) Jafarian, A ; Roshanghalb, F ; Saidi, M. H ; Imanimehr, F ; Sharif University of Technology
    2011
    Abstract
    The objective of the present work is to compare the performance of the regenerator of pulse tube refrigerators at low and high frequencies. The hydrodynamic and thermal behavior of the regenerator is investigated in this respect. To consider the system performance, a system of conservation equations including two energy equations for the regenerator as a porous media is employed. The present model considers one-dimensional, periodic, unsteady, compressible flow in the regenerator. The conservation equations are transformed by implementing the volumetric average scheme. The method of harmonic approximation is employed to derive an analytical solution. To explore the system performance, net...