Loading...
Search for: validation-process
0.007 seconds
Total 39 records

    Three-dimensional simulation of urine concentrating mechanism in a functional unit of rat outer medulla. I. Model structure and base case results

    , Article Mathematical Biosciences ; Vol. 258 , 2014 , pp. 44-56 ; ISSN: 00255564 Sohrabi, S ; Saidi, M. S ; Saadatmand, M ; Banazadeh, M. H ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    The urine formation and excretion system have long been of interest for mathematicians and physiologists to elucidate the obscurities within the process happens in renal tissue. In this study, a novel three-dimensional approach is utilized for modeling the urine concentrating mechanism in rat renal outer medulla which is essentially focused on demonstrating the significance of tubule's architecture revealed in anatomic studies and physiological literature. Since nephrons and vasculatures work interdependently through a highly structured arrangement in outer medulla which is dominated by vascular bundles, a detailed functional unit is proposed based on this specific configuration.... 

    On-line micro solid-phase extraction of clodinafop propargyl from water, soil and wheat samples using electrospun polyamide nanofibers

    , Article Chromatographia ; Vol. 77, issue. 9-10 , May , 2014 , p. 723-728 Bagheri, H ; Asgari, S ; Piri-Moghadam, H ; Sharif University of Technology
    Abstract
    An on-line extraction/determination set up was designed for micro solid-phase extraction of clodinafop propargyl from water, soil and wheat samples using electrospun polyamide nanofiber mats. The prepared mats were packed in a stainless steel tube which conveniently acted as a high-performance liquid chromatography injection loop. Influential parameters affecting the extraction efficiency were optimized using a distilled water sample fortified with 25 μg L-1 of clodinafop propargyl. An enrichment factor of 440 was achieved for clodinafop propargyl indicating the ability of the whole procedure. Under the optimum conditions, the linearity for the analyte was in the range of 6-700 μg L-1, while... 

    Numerical investigation on the solid flow pattern in bubbling gas-solid fluidized beds: Effects of particle size and time averaging

    , Article Powder Technology ; Vol. 264, issue , September , 2014 , p. 466-476 Askarishahi, M ; Salehi, M. S ; Molaei Dehkordi, A ; Sharif University of Technology
    Abstract
    The effects of particle size on the solid flow pattern in gas-solid bubbling fluidized beds were investigated numerically using two-fluid model based on the kinetic theory of granular flow. In this regard, the set of governing equations was solved using finite volume method in two-dimensional Cartesian coordinate system. Glass bead particles with mean sizes of 880. μm, 500. μm, and 351. μm were fluidized by air flow at excess gas velocities of 0.2. m/s and 0.4. m/s. For particle diameters of 880 and 351. μm, the predicted characteristic times for solid dispersion were 0.14. s and 0.15. s, respectively, while characteristic times for solid diffusivity were 1.68. ms and 0.75. ms in the same... 

    A bio-inspired modular hierarchical structure to plan the sit-to-stand transfer under varying environmental conditions

    , Article Neurocomputing ; Volume 118 , 2013 , Pages 311-321 ; 09252312 (ISSN) Sadeghi, M ; Emadi Andani, M ; Parnianpour, M ; Fattah, A ; Sharif University of Technology
    2013
    Abstract
    Human motion planning studies are of considerable importance in producing human-like trajectories for various industrial or clinical applications (e.g. assistive robots). In this case, the capability of Central Nervous System (CNS) in generating a large repertoire of actions can be inspirational to develop more efficient motion planning approaches. Here, inspired by structural and functional modularity in the CNS, a novel modular and hierarchical model is developed to plan the sit-to-stand (STS) transfer under varying environmental conditions. In this model, the planning process is distributed among several functionally simple modules. The cooperation of modules enables the model to plan the... 

    Discovering dominant pathways and signal-response relationships in signaling networks through nonparametric approaches

    , Article Genomics ; Volume 102, Issue 4 , October , 2013 , Pages 195-201 ; 08887543 (ISSN) Nassiri, I ; Masoudi Nejad, A ; Jalili, M ; Moeini, A ; Sharif University of Technology
    2013
    Abstract
    A signaling pathway is a sequence of proteins and passenger molecules that transmits information from the cell surface to target molecules. Understanding signal transduction process requires detailed description of the involved pathways. Several methods and tools resolved this problem by incorporating genomic and proteomic data. However, the difficulty of obtaining prior knowledge of complex signaling networks limited the applicability of these tools. In this study, based on the simulation of signal flow in signaling network, we introduce a method for determining dominant pathways and signal response to stimulations. The model uses topology-weighted transit compartment approach and comprises... 

    Validation of the revised stressful life event questionnaire using a hybrid model of genetic algorithm and artificial neural networks

    , Article Computational and Mathematical Methods in Medicine ; Volume 2013 , 2013 ; 1748670X (ISSN) Sali, R ; Roohafza, H ; Sadeghi, M ; Andalib, E ; Shavandi, H ; Sarrafzadegan, N ; Sharif University of Technology
    2013
    Abstract
    Objectives. Stressors have a serious role in precipitating mental and somatic disorders and are an interesting subject for many clinical and community-based studies. Hence, the proper and accurate measurement of them is very important. We revised the stressful life event (SLE) questionnaire by adding weights to the events in order to measure and determine a cut point. Methods. A total of 4569 adults aged between 18 and 85 years completed the SLE questionnaire and the general health questionnaire-12 (GHQ-12). A hybrid model of genetic algorithm (GA) and artificial neural networks (ANNs) was applied to extract the relation between the stressful life events (evaluated by a 6-point Likert scale)... 

    Dynamic responses of intervertebral disc during static creep and dynamic cyclic loading: A parametric Poroelastic finite element analysis

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 25, Issue 1 , 2013 ; 10162372 (ISSN) Nikkhoo, M ; Haghpanahi, M ; Parnianpour, M ; Wang, J. L ; Sharif University of Technology
    2013
    Abstract
    Low back pain is a common reason for activity limitation in people younger than 45 years old, and was proved to be associated with heavy physical works, repetitive lifting, impact, stationary work postures and vibrations. The study of load transferring and the loading condition encountered in spinal column can be simulated by finite element models. The intervertebral disc is a structure composed of a porous material. Many physical models were developed to simulate this phenomenon. The confounding effects of poroelastic properties and loading conditions on disc mechanical responses are, nevertheless, not cleared yet. The objective of this study was to develop an axisymmetric poroelastic... 

    Advantage of applying OSC to 1H NMR-based metabonomic data of celiac disease

    , Article International Journal of Endocrinology and Metabolism ; Volume 10, Issue 3 , 2012 , Pages 548-552 ; 1726913X (ISSN) Rezaei Tavirani, M ; Fathi, F ; Darvizeh, F ; Zali, M. R ; Nejad, M. R ; Rostami, K ; Tafazzoli, M ; oskouie, A. A ; Mortazavi Tabatabaei, S. A ; Sharif University of Technology
    2012
    Abstract
    Background: Celiac disease (CD) is a disorder associated with body reaction to gluten. After the gluten intake, an immune reaction against the protein occurs and damages villi of small intestine in celiac patients gradually. Objectives: The OSC, a filtering method for minimization of inter- and intra-spectrom-eter variations that influence on data acquisition, was applied to biofluid NMR data of CD patients. Patients and Methods: In this study, metabolites of total 56 serum samples from 12 CD patients, 15 CD patients taking gluten-free diet (GFD), and 29 healthy cases were analyzed using nuclear magnetic resonance (NMR) and associated theoretical analysis. Employ-ing ProMetab (version... 

    Preparation of a naltrexone HCL potentiometric sensor and its application to pharmaceutical analysis and drug determination in biological fluids

    , Article Journal of Food and Drug Analysis ; Volume 19, Issue 4 , 2011 , Pages 445-451+539 ; 10219498 (ISSN) Ghorbani Bidkorbeh, F ; Shahrokhian, S ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    Abstract
    A novel ion selective electrode is fabricated for naltrexone HCl and used in pharmaceutical analysis and drug determination in biological fluids without complicated pretreatments and extractions, using direct potentiometry. The naltrexone complex with sodium tetraphenyl borate (NaTPB) is obtained by in situ soaking PVC membrane electrode in an 1 × 10 -3 M naltrexone solution. The sensor exhibited fast, reproducible and linear sub-Nernstian response over concentration range of 1 × 10 -5 - 1 × 10 -3 M with a detection limit of 5 × 10 -6 M. The membrane sensor was successfully applied to the determination of naltrexone in capsules as well as for its determination in urine and plasma samples  

    Modeling of retention behaviors of most frequent components of essential oils in polar and non-polar stationary phases

    , Article Journal of Separation Science ; Volume 34, Issue 13 , 2011 , Pages 1538-1546 ; 16159306 (ISSN) Jalali Heravi, M ; Ebrahimi Najafabadi, H ; Sharif University of Technology
    2011
    Abstract
    The gas chromatography retention indices of 100 different components of essential oils, on three columns with stationary phases of different polarities, were used to develop robust quantitative structure-retention relationship (QSRR) models. Two linear models with only one variable, i.e. solvation entropy, were developed, which explain 95 and 94% of variances of the test set for dimethyl silicone and dimethyl silicone with 5% phenyl group columns, respectively. These models are extremely simple and easy to interpret, but they show higher errors compared with more robust models such as partial least square (PLS) and ridge regressions. For the third column (polyethylene glycol (PEG)), 24... 

    Predictive equations to estimate spinal loads in symmetric lifting tasks

    , Article Journal of Biomechanics ; Volume 44, Issue 1 , Jan , 2011 , Pages 84-91 ; 00219290 (ISSN) Arjmand, N ; Plamondon, A ; Shirazi Adl, A ; Larivière, C ; Parnianpour, M ; Sharif University of Technology
    2011
    Abstract
    Response surface methodology is used to establish robust and user-friendly predictive equations that relate responses of a complex detailed trunk finite element biomechanical model to its input variables during sagittal symmetric static lifting activities. Four input variables (thorax flexion angle, lumbar/pelvis ratio, load magnitude, and load position) and four model responses (L4-L5 and L5-S1 disc compression and anterior-posterior shear forces) are considered. Full factorial design of experiments accounting for all combinations of input levels is employed. Quadratic predictive equations for the spinal loads at the L4-S1 disc mid-heights are obtained by regression analysis with adequate... 

    Hydrodynamic characteristics of gas-solid tapered fluidized beds: Experimental studies and empirical models

    , Article Powder Technology ; Volume 283 , October , 2015 , Pages 355-367 ; 00325910 (ISSN) Rasteh, M ; Farhadi, F ; Bahramian, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Understanding the hydrodynamic behavior of tapered fluidized beds is essential for accurate design and better operation in these fluid-solid contactors. Minimum fluidization velocity, minimum velocity of full fluidization, maximum pressure drop and bed expansion ratio are more important hydrodynamic characteristics in tapered fluidized beds. In this study, based on experimental data, dimensional analysis has been used to develop dimensionless correlations for predicting hydrodynamic characteristics of Geldart B particles in tapered fluidized bed. The effects of bed geometry, static bed height, particle density, size, and sphericity and also interparticle forces on hydrodynamic behavior of... 

    A novel pipeline architecture of replacing ink drop spread

    , Article Proceedings - 2010 2nd World Congress on Nature and Biologically Inspired Computing, NaBIC 2010, 15 December 2010 through 17 December 2010, Kitakyushu ; 2010 , Pages 127-133 ; 9781424473762 (ISBN) Firouzi, M ; Bagheri Shouraki, S ; Tabandeh, M ; Mousavi, H. R ; Sharif University of Technology
    2010
    Abstract
    Human Brain is one of the most wonderful and complex systems which is designed for ever; A huge complex network composed of neurons as tiny biological and chemical processors which are distributed and work together as a super parallel system to do control and vital activities of human body. Brain learning simulation and hardware implementation is one of the most interesting research areas in order to make artificial brain. One of the researches in this area is Active Learning Method in brief ALM. ALM is an adaptive recursive fuzzy learning algorithm based on brain functionality and specification which models a complex Multi Input Multi Output System as a fuzzy combination of Single Input... 

    A new method for assessing domino effect in chemical process industry

    , Article Journal of Hazardous Materials ; Volume 182, Issue 1-3 , 2010 , Pages 416-426 ; 03043894 (ISSN) Abdolhamidzadeh, B ; Abbasi, T ; Rashtchian, D ; Abbasi, S. A ; Sharif University of Technology
    2010
    Abstract
    A new methodology is presented with which the likely impact of accident in one process unit of an industry on other process units can be forecast and assessed. The methodology is based on Monte Carlo Simulation and overcomes the limitations of analytical methods, used hitherto, which were inherently limited in their ability to handle the uncertainty and the complexity associated with domino effect phenomena. The methodology has been validated and its applicability has been demonstrated with two case studies  

    Micromechanics and constitutive modeling of connective soft tissues

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 60 , 2016 , Pages 157-176 ; 17516161 (ISSN) Fallah, A ; Ahmadian, M. T ; Firozbakhsh, K ; Aghdam, M. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical... 

    Shuffling multivariate adaptive regression splines and adaptive neuro-fuzzy inference system as tools for QSAR study of SARS inhibitors

    , Article Journal of Pharmaceutical and Biomedical Analysis ; Volume 50, Issue 5 , 2009 , Pages 853-860 ; 07317085 (ISSN) Jalali Heravi, M ; Asadollahi Baboli, M ; Mani Varnosfaderani, A ; Sharif University of Technology
    Abstract
    In this work, the inhibitory activity of pyridine N-oxide derivatives against human severe acute respiratory syndrome (SARS) is predicted in terms of quantitative structure-activity relationship (QSAR) models. These models were developed with the aid of multivariate adaptive regression spline (MARS) and adaptive neuro-fuzzy inference system (ANFIS) combined with shuffling cross-validation technique. A shuffling MARS algorithm is utilized to select the most important variables in QSAR modeling and then these variables were used as inputs of ANFIS to predict SARS inhibitory activities of pyridine N-oxide derivatives. A data set of 119 drug-like compounds was coded with over hundred calculated... 

    Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium

    , Article Mathematical Biosciences ; Volume 294 , 2017 , Pages 160-171 ; 00255564 (ISSN) Zehi Mofrad, A ; Mashayekhan, S ; Bastani, D ; Sharif University of Technology
    Abstract
    This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation. Moreover, the effects of the scaffold geometry on cell density were examined by changing the channel numbers and the construct length. A 30% increase in the average cells... 

    Numerical analysis of a dielectrophoresis field-flow fractionation device for the separation of multiple cell types

    , Article Journal of Separation Science ; Volume 40, Issue 20 , 2017 , Pages 4067-4075 ; 16159306 (ISSN) Shamloo, A ; Kamali, A ; Sharif University of Technology
    Abstract
    In this study, a dielectrophoresis field-flow fractionation device was analyzed using a numerical simulation method and the behaviors of a set of different cells were investigated. By reducing the alternating current frequency of the electrodes from the value used in the original setup configuration and increasing the number of exit channels, total discrimination in cell trajectories and subsequent separation of four cell types were achieved. Cells were differentiated based on their size and dielectric response that are represented in their real part of Clausius–Mossotti factor at different frequencies. A number of novel designs were also proposed based on the original setup configuration.... 

    Findings of DTI-p maps in comparison with T 2 /T 2 -FLAIR to assess postoperative hyper-signal abnormal regions in patients with glioblastoma 08 Information and Computing Sciences 0801 Artificial Intelligence and Image Processing

    , Article Cancer Imaging ; Volume 18, Issue 1 , 2018 ; 14707330 (ISSN) Beigi, M ; Safari, M ; Ameri, A ; Shojaee Moghadam, M ; Arbabi, A ; Tabatabaeefar, M ; Salighehrad, H ; Sharif University of Technology
    BioMed Central Ltd  2018
    Abstract
    Purpose: The aim of this study was to compare diffusion tensor imaging (DTI) isotropic map (p-map) with current radiographically (T 2/T 2 -FLAIR) methods based on abnormal hyper-signal size and location of glioblastoma tumor using a semi-automatic approach. Materials and methods: Twenty-five patients with biopsy-proved diagnosis of glioblastoma participated in this study. T 2, T 2 -FLAIR images and diffusion tensor imaging (DTI) were acquired 1 week before radiotherapy. Hyper-signal regions on T 2, T 2 -FLAIR and DTI p-map were segmented by means of semi-automated segmentation. Manual segmentation was used as ground truth. Dice Scores (DS) were calculated for validation of semiautomatic... 

    A patient specific finite element simulation of intramedullary nailing to predict the displacement of the distal locking hole

    , Article Medical Engineering and Physics ; Volume 55 , May , 2018 , Pages 34-42 ; 13504533 (ISSN) Mortazavi, J ; Farahmand, F ; Behzadipour, S ; Yeganeh, A ; Aghighi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Distal locking is a challenging subtask of intramedullary nailing fracture fixation due to the nail deformation that makes the proximally mounted targeting systems ineffective. A patient specific finite element model was developed, based on the QCT data of a cadaveric femur, to predict the position of the distal hole of the nail postoperatively. The mechanical interactions of femur and nail (of two sizes) during nail insertion was simulated using ABAQUS in two steps of dynamic pushing and static equilibrium, for the intact and distally fractured bone. Experiments were also performed on the same specimen to validate the simulation results. A good agreement was found between the model...