Loading...
Search for: underactuation
0.006 seconds
Total 24 records

    A Novel Design for Aerial Robots to Enhance Flight Performance

    , M.Sc. Thesis Sharif University of Technology Beigomi, Bahador (Author) ; Banazadeh, Afshin (Supervisor)
    Abstract
    The purpose of this research is the conceptual design of an aerial robot that has the ability to reach different locations without changing its horizontal attitude. The main missions of the aerial robots are monitoring and delivery, in which none of them requires the robot to leave its horizontal attitude. The main task of the robot is to deliver the goods to the specified points. In order to do this, it must have an appropriate container for carrying the cargo, high safety to prevent damage to the cargo and individuals, the ability to carry out missions when one of the subsystems exits, and the appropriate flight speed for Deliver cargo to the customer as fast as possible. All of the... 

    Robust Controller Design for Three-Dimensional Overhead Crane System with Variable Cable Length

    , M.Sc. Thesis Sharif University of Technology Khoshnazar, Mohammad (Author) ; Moradi, Hamed (Supervisor)
    Abstract
    The main goal of controlling overhead crane systems is to safely transfer the load to its desired position with maximum speed and accuracy, as well as to minimize or eliminate load oscillations. The overhead crane system is considered as an underactuated mechanical system in which the number of control inputs (actuators) is less than the number of degrees of freedom. In addition, overhead crane systems are generally associated with parametric or unmodeled uncertainties. Also, in these systems, external disturbances such as wind have a destructive effect on the system's performance. In addition, if the overhead crane has the hoisting mechanism and the length of the rope changes as the trolley... 

    Distributed Optimal Control via Central Pattern Generator with Application to Biped Locomotion

    , M.Sc. Thesis Sharif University of Technology Yazdani Jahromi, Masoud (Author) ; Salarieh, Hassan (Supervisor) ; Saadat Foumani, Mahmood (Supervisor)
    Abstract
    Human walking is widely recognized as one of the most adaptable and robust forms of locomotion in nature, with intricate neural and biomechanical systems interacting to support this complex behavior. It is proposed that these systems are organized in a hierarchical structure, with the lower level comprising a complex distributed system consisting of muscles and the spinal cord, and the higher level being the brain cortex. The higher level is responsible for training and monitoring the output of the lower level, and intervening when the lower system fails to stabilize the system. To control the lower level, one popular model that has emerged is the central pattern generator (CPG). It is... 

    Learning-based Control System Design for the Bipedal Running Robot and Development of a Two-layer Framework for Generating the Optimal Paths in Various Movement Maneuvers

    , M.Sc. Thesis Sharif University of Technology Amiri, Aref (Author) ; Salarieh, Hassan (Supervisor)
    Abstract
    Foot movement is one of the most powerful and adaptable methods of movement in nature. Inspired by humans, the most intelligent creatures on earth, bipedal robots have many uses. In this research, a control method for running a bipedal robot has been designed. In the simulation part of the five-link model, the robot's motion equations for running and walking at different levels are extracted by the Lagrange method. In path generation, using the two-layer optimization method and holonomic and dynamic constraints, optimal paths are produced which are kinematically and dynamically possible (feasible). Additionally, path generation is facilitated by an invariant impact constraint to ensure the... 

    Designing a Distributed Controller for an Under-Actuated Running Robot with Learning Ability

    , M.Sc. Thesis Sharif University of Technology Ehteshami, Vahid (Author) ; Salarieh, Hassan (Supervisor)
    Abstract
    Walking-robots have received much attention because of the variety of motion maneuvers they can produce and the many applications they have in various areas including rehabilitation. One of these maneuvers is running. In this study, a time-invariant controller is designed to dynamically stabilize a five-link and a seven-link running-robots in two dimensions. In the simulation of the seven-link model, an attempt has been made to measure the impact of the circular foot on the stepping pattern. Also, it is tried to present a dynamically simple model similar to the geometry of the human body. Simulations are performed in MATLAB software. The running is modeled with three phases of stance, flight... 

    Synthesis of a Group of Mechanisms with Dual Function Depending on the Input Velocities

    , M.Sc. Thesis Sharif University of Technology Zouelm, Ali (Author) ; Fallah Rajabzadeh, Famida (Supervisor) ; Zohoor, Hassan (Supervisor)
    Abstract
    Compliant mechanisms are generally used in quasi-static condition and therefore system dynamics do not have a significant effect on their performance; But if the inertia of the links is high, the dynamics of the mechanism will affect its performance altogether. By cleverly designing the mechanism, these effects can be used to create new movement patterns. In this research, a family of compliant mechanisms is introduced whose movement patterns are a function of input speeds. This means that at low speeds, the flexibility of the mechanism does not have a significant effect on its performance, but when the speed exceeds a certain limit, this flexibility changes the configuration of the... 

    Design of a Distributed Controller for Stabilizing the Locomotion of Seven-Link Underactuated Planar Biped Robot with Training Ability

    , M.Sc. Thesis Sharif University of Technology Kakaei, Mohammad Mehdi (Author) ; Salarieh, Hassan (Supervisor)
    Abstract
    In this work inspiring from the nature a control method is proposed for a stable rhythmic walking in a seven-link underactuated biped robot. Stable walking is a very important issue in biped robots and proposing a dynamically stable pattern of motion with the capability of acceleration and learning is our main purpose. It is tried that the presented method make the robot have a human like motion. This method controls dynamically the hybrid model of robot’s movement and stabilizes it by converging the time-invariant constraints considered to make this movement. Moreover, in addition to providing a suitable gait for the bipod robot, a robust control method is designed to improve the ability of... 

    Point to point Control of a Brachiation Robot Based on Neural Network

    , M.Sc. Thesis Sharif University of Technology Babaei, Bashir (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    • Brachiation robot is a kind of under-actuated robots. A brachiating robot is a type of a mobile arm that is capable of moving from branch to branch similar to a long-armed ape. The purpose of this thesis is control of a two link Brachiation robot. The purpose of this thesis is control of a two link Brachiation robot using neural network and geometry control. For this purpose a genetic algorithm based training Neural Network is used to produce a suitable path for the second link of the robot and then using input-output linearization method, the second link is controlled to follow the path. The simulations shows that the Nero Controller designed in this thesis is suitable. The controller can... 

    Geometric Control of Brachiation Robot using Controlled Lagrangians Method

    , M.Sc. Thesis Sharif University of Technology Tashakori, Shabnam (Author) ; Vosoughi, Gholamreza (Supervisor) ; Azadi Yazdi, Ehsan (Supervisor)
    Abstract
    This thesis studies a brachiation robot that is a long armed locomotion similar to apes. The robot has 2 revolute joints but only one of them is actuated. In this thesis, after deriving dynamic model of the robot, the Controlled Lagrangian (CL) method is used for stabilization. The matching conditions satisfied for the controller are derived and the extended λ-method is used to solve PDE’s involved in the method of controlled lagrangian. Satisfactory controller’s gains are chosen by PSO algorithm. Feasibility of the developed controller is investigated by numerical simulations and finally, theoretical results are validated with experimental observations  

    Design and Analysis of a Force-Isotropic Underactuated Humanoid Hand

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Milad (Author) ; Zohoor, Hassan (Supervisor)
    Abstract
    Robots have been widely used for various applications, especially during the last decades. Robots are made of several parts, in which, "Hand" is one of the most important of those. Hands are designed according to their applications and are not necessarily like human ones. Development of humanoid robots, however, brings a special place to human-like hands. In this research, a force-isotropic underactuated finger with two phalanxes and one actuator is designed, considering design limitations and through static analysis. Tendon, cam and mechanical lock (ratchet gear) are among the main components which have been considered in the finger design. Then, a model was fabricated and tested in order... 

    Modeling and Control of a Fish Robotic System Using Hardware in the Loop Methodology

    , M.Sc. Thesis Sharif University of Technology Zeinoddini Meymand, Sajjad (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    In the present study, an adaptive sliding mode control method was employed to control a fish robotic system using the method of hardware in the loop. Following the introduction of the nonlinear model for the robot, elongated body theory, suggested by Lighthill, was used to analyze fish movements. Lighthill’s theory inspired from slender body theory in aerodynamics scope could be viable to exercise upon the carangiform mode of swimming. By simplifying Lighthill’s equations in planar motion of fish robot, the number of degrees of freedom exceeds the number of the control variables. In view of the fact that the presented model is an under-actuated model, there exist some parametric and... 

    Control of Two Degree of Freedom Underactuated Systems

    , M.Sc. Thesis Sharif University of Technology Rahmati, Rahman (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    In robotic, Underactuated systems are interesting subject to study. Underactuated system, is a system that have fewer actuator than degrees of freedom. Underactuated systems are composed of active and passive joints. passive joints are existed, in order to decrease the weight, cost, and energy consumption. Usually, control of these systems are difficult. Underactuated systems have acceleration constraint. This property make the control method have fundamental constraint. So that controller dynamic could not be a smooth function of states of system. So most of standard method in control, such as feedback linearization, are not applicable. Local linearizing methods, because of... 

    Geometric control of the brachiation robot using controlled Lagrangians method

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; 17 December , 2014 , Pages 706-710 Tashakori, S ; Vossoughi, G ; Yazdi, E. A ; Sharif University of Technology
    Abstract
    This paper studies a brachiation robot that is a long armed locomotion similar to apes. The robot has 2 revolute joints but only one of them is actuated. In this paper, after deriving dynamic model of the robot the Controlled Lagrangian (CL) method is used for stabilization. The matching conditions satisfied for the controller are derived and the extended λ-method is used to solve PDE's involved in the method of controlled lagrangian. Satisfactory controller's gains are chosen by PSO algorithm. Finally, feasibility of the developed controller is investigated by numerical simulations  

    Dynamics and control of the flexible needles for percutaneous application: Partial feedback linearization method

    , Article IEEE International Symposium on Industrial Electronics ; 2012 , Pages 831-834 ; 9781467301589 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2012
    Abstract
    In this paper the dynamics and control of the underactuated flexible needle will be discussed. To evaluate the dynamics of the needle, the study uses Saint Venant-Kirchhoff and finite element method. The model is validated using the experimental data provided in the literature. It is also shown that using iterative decomposition of the dynamics equation the unactuated degree of freedom of the needle tip can be feedback linearized. The effect of the control signal exerted on the tip is projected via iterative decomposition of the dynamics equation. The efficiency of the approach will be next explored through some examples  

    Biped hopping control bazsed on spring loaded inverted pendulum model

    , Article International Journal of Humanoid Robotics ; Volume 7, Issue 2 , 2010 , Pages 263-280 ; 02198436 (ISSN) Tamaddoni, S. H ; Jafari, F ; Meghdari, A ; Sohrabpour, S ; Sharif University of Technology
    2010
    Abstract
    Human running can be stabilized in a wide range of speeds by automatically adjusting muscular properties of leg and torso. It is known that fast locomotion dynamics can be approximated by a spring loaded inverted pendulum (SLIP) system, in which leg is replaced by a single spring connecting body mass to ground. Taking advantage of the inherent stability of SLIP model, a hybrid control strategy is developed that guarantees a stable biped locomotion in sagittal plane. In the presented approach, nonlinear control methods are applied to synchronize the biped dynamics and the spring-mass dynamics. As the biped center of mass follows the mass of the mass-spring model, the whole biped performs a... 

    Ultimate state boundedness of underactuated spacecraft subject to an unmatched disturbance

    , Article Journal of Theoretical and Applied Mechanics (Poland) ; Volume 55, Issue 3 , 2017 , Pages 1055-1066 ; 14292955 (ISSN) Moradi, R ; Alikhani, A ; Fathi Jegarkandi, M ; Sharif University of Technology
    Polish Society of Theoretical and Allied Mechanics  2017
    Abstract
    Ultimate state boundedness for underactuated spacecraft subject to large non-matched disturbances is attained. First, non-smooth time-invariant state feedback control laws that make the origin asymptotically stable are obtained. Then, the controller is extended to make the closed-loop system globally uniformly ultimately bounded under the following conditions: 1) the disturbances acting on the directly actuated states are known and 2) the disturbance acting on the unactuated state is bounded and its profile need not be known. Finally, numerical simulations are presented to verify the analytical results. A large step disturbance is considered, and it is shown that the proposed controller... 

    New robust control method applied to the locomotion of a 5-link biped robot

    , Article Robotica ; 2019 ; 02635747 (ISSN) Mehdi Kakaei, M ; Salarieh, H ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    This paper proposes a new design of robust control combining feedback linearization, backstepping, and sliding mode control called FLBS applied to the locomotion of five-link biped robot. Due to the underactuated robot's model, the system has a hybrid nature, while the FLBS control can provide a stabilized walking movement even with the existence of large disturbances and uncertainties by implementing smooth chatter-free signals. Stability of the method is proven using the Lyapunov theorem based on the hybrid zero dynamics and Poincaré map. The simulations show the controller performance such as robustness and chatter-free response in the presence of uncertainty and disturbance. © 2020... 

    New robust control method applied to the locomotion of a 5-link biped robot

    , Article Robotica ; 2019 ; 02635747 (ISSN) Mehdi Kakaei, M ; Salarieh, H ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    This paper proposes a new design of robust control combining feedback linearization, backstepping, and sliding mode control called FLBS applied to the locomotion of five-link biped robot. Due to the underactuated robot's model, the system has a hybrid nature, while the FLBS control can provide a stabilized walking movement even with the existence of large disturbances and uncertainties by implementing smooth chatter-free signals. Stability of the method is proven using the Lyapunov theorem based on the hybrid zero dynamics and Poincaré map. The simulations show the controller performance such as robustness and chatter-free response in the presence of uncertainty and disturbance. © 2020... 

    New robust control method applied to the locomotion of a 5-link biped robot

    , Article Robotica ; Volume 38, Issue 11 , January , 2020 , Pages 2023-2038 Kakaei, M. M ; Salarieh, H ; Sharif University of Technology
    Cambridge University Press  2020
    Abstract
    This paper proposes a new design of robust control combining feedback linearization, backstepping, and sliding mode control called FLBS applied to the locomotion of five-link biped robot. Due to the underactuated robot's model, the system has a hybrid nature, while the FLBS control can provide a stabilized walking movement even with the existence of large disturbances and uncertainties by implementing smooth chatter-free signals. Stability of the method is proven using the Lyapunov theorem based on the hybrid zero dynamics and Poincaré map. The simulations show the controller performance such as robustness and chatter-free response in the presence of uncertainty and disturbance. Copyright ©... 

    Control of the cedra brachiation robot using combination of controlled lagrangians method and particle swarm optimization algorithm

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 44, Issue 1 , 2020 , Pages 11-21 Tashakori, S ; Vossoughi, G ; Azadi Yazdi, E ; Sharif University of Technology
    Springer  2020
    Abstract
    This paper studies the control of a brachiating robot imitating the locomotion of a long armed ape. The robot has two revolute joints, but only one of them is actuated. In this paper, after deriving dynamic model of the robot, the Controlled Lagrangians (CL) method is used to design a controller for point to point locomotion. The CL method involves satisfying a number of equations called matching conditions. The matching conditions are derived using the extended λ-method in the form of a set of partial differential equations (PDEs). Solving the PDEs, a class of controllers is found that satisfies the matching conditions. The fittest controller in the class of controllers is then chosen by...