Loading...
Search for: unclassified-drug
0.013 seconds
Total 318 records

    ZrOCl2·8H2O on montmorillonite K10 accelerated conjugate addition of amines to α,β-unsaturated alkenes under solvent-free conditions

    , Article Tetrahedron ; Volume 62, Issue 4 , 2006 , Pages 672-677 ; 00404020 (ISSN) Hashemi, M. M ; Eftekhari-Sis, B ; Abdollahifar, A ; Khalili, B ; Sharif University of Technology
    2006
    Abstract
    At room temperature, ZrOCl2·8H2O on montmorillonite K10 efficiently catalyzes conjugate addition of amines to a variety of conjugated alkenes such as α,β-unsaturated carbonyl compounds, carboxylic esters, nitriles and amides under solvent-free conditions. The catalyst can be recycled for subsequent reactions without any appreciable loss of efficiency. © 2005 Elsevier Ltd. All rights reserved  

    Water dispersed magnetic nanoparticles (H2O-DMNPs) of γ-Fe2O3 for multicomponent coupling reactions: A green, single-pot technique for the synthesis of tetrahydro-4H-chromenes and hexahydroquinoline carboxylates

    , Article Tetrahedron Letters ; Volume 54, Issue 26 , 2013 , Pages 3344-3347 ; 00404039 (ISSN) Rostamnia, S ; Nuri, A ; Xin, H ; Pourjavadi, A ; Hosseini, S. H ; Sharif University of Technology
    2013
    Abstract
    Water dispersed magnetic nanoparticles (DMNPs) of γ-Fe 2O3 represent a simple and green catalyst for the rapid three-component synthesis of tetrahydro-4H-chromene and hexahydroquinoline carboxylate skeletons via single-pot domino Knoevenagel-Michael-cyclization reactions  

    Visible-enhanced photocatalytic performance of CuWO4/WO3 hetero-structures: Incorporation of plasmonic Ag nanostructures

    , Article New Journal of Chemistry ; Volume 42, Issue 13 , 2018 , Pages 11109-11116 ; 11440546 (ISSN) Salimi, R ; Sabbagh Alvani, A. A ; Naseri, N ; Du, S. F ; Poelman, D ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    A new plasmonic Ag hybridized CuWO4/WO3 heterostructure was successfully synthesized via a ligand-assisted sol gel method. The as-prepared plasmonic nanohybrid was thoroughly characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, photoluminescence (PL) spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Brunauer-Emmett-Teller (BET) surface area analysis and electrochemical impedance spectroscopy (EIS). Moreover, the photocatalytic activity was evaluated by photo-degradation of methylene blue (MB) under visible light irradiation. The results indicate that the as-prepared plasmonic Ag-CuWO4/WO3 nanohybrid (compared to pure... 

    Use of gas chromatography-mass spectrometry combined with resolution methods to characterize the essential oil components of Iranian cumin and caraway

    , Article Journal of Chromatography A ; Volume 1143, Issue 1-2 , 2007 , Pages 215-226 ; 00219673 (ISSN) Jalali Heravi, M ; Zekavat, B ; Sereshti, H ; Sharif University of Technology
    2007
    Abstract
    Gas chromatography-mass spectrometry combined with iterative and non-iterative resolution methods was used to characterize the essential oil components of Iranian cumin and caraway. Orthogonal projection resolution (OPR) as a non-iterative and distance-selection-multivariate curve resolution-alternative least squares (DS-MCR-ALS) as an iterative method were used as auxiliary means to the analysis in the case of overlapping peaks. A total of 19 and 39 components were identified by direct similarity searches for cumin and caraway oils, respectively. These numbers were extended to 49 and 98 components, respectively with the help of chemometric techniques. Major constituents in cumin are... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of... 

    Unexpected optical limiting properties from MoS2 nanosheets modified by a semiconductive polymer

    , Article Chemical Communications ; Volume 51, Issue 61 , Jun , 2015 , Pages 12262-12265 ; 13597345 (ISSN) Zhao, M ; Chang, M. J ; Wang, Q ; Zhu, Z. T ; Zhai, X. P ; Zirak, M ; Moshfegh, A. Z ; Song, Y. L ; Zhang, H. L ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Direct solvent exfoliation of bulk MoS2 with the assistance of poly(3-hexylthiophene) (P3HT) produces a novel two-dimensional organic/inorganic semiconductor hetero-junction. The obtained P3HT-MoS2 nanohybrid exhibits unexpected optical limiting properties in contrast to the saturated absorption behavior of both P3HT and MoS2, showing potential in future photoelectric applications  

    Ultrasound-assisted synthesis of highly functionalized benzo[1,3]thiazine via Cu-catalyzed intramolecular C–H activation reaction from isocyanides, aniline-benzoyl(acetyl) isothiocyanate adduct

    , Article Ultrasonics Sonochemistry ; Volume 50 , 2019 , Pages 1-5 ; 13504177 (ISSN) Nematpour, M ; Rezaee, E ; Jahani, M ; Tabatabai, S. A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A facile sonochemical route for the synthesis of benzo[1,3]thiazine derivatives via a one pot, multicomponent, intramolecular C–H activation reaction from isocyanides, aniline and benzoyl (acetyl) isothiocyanate adduct catalyzed by copper (I) iodide in acetone at 30 °C have been reported. The advantages of the described method include using simple and readily available starting materials and performing under mild copper-catalytic reaction conditions and also obtaining pure product with high yield without applying column chromatography. Furthermore, using the sonochemical methodology as an efficient method led to reduce the reaction times. © 2018 Elsevier B.V  

    Ultrasound-assisted synthesis of highly functionalized benzo[1,3]thiazine via Cu-catalyzed intramolecular C–H activation reaction from isocyanides, aniline-benzoyl(acetyl) isothiocyanate adduct

    , Article Ultrasonics Sonochemistry ; Volume 50 , 2019 , Pages 1-5 ; 13504177 (ISSN) Nematpour, M ; Rezaee, E ; Jahani, M ; Tabatabai, S. A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A facile sonochemical route for the synthesis of benzo[1,3]thiazine derivatives via a one pot, multicomponent, intramolecular C–H activation reaction from isocyanides, aniline and benzoyl (acetyl) isothiocyanate adduct catalyzed by copper (I) iodide in acetone at 30 °C have been reported. The advantages of the described method include using simple and readily available starting materials and performing under mild copper-catalytic reaction conditions and also obtaining pure product with high yield without applying column chromatography. Furthermore, using the sonochemical methodology as an efficient method led to reduce the reaction times. © 2018 Elsevier B.V  

    Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite

    , Article Chemosphere ; Volume 247 , May , 2020 Molavi, H ; Neshastehgar, M ; Shojaei, A ; Ghashghaeinejad, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, UiO-66 and its composite nanoparticles with thermally oxidized nanodiamond (OND) were synthesized via a simple solvothermal method and utilized as solid adsorbent for the removal of anionic methyl red (MR) dye and cationic malachite green (MG) dye from contaminated water. The synthesized adsorbents were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), N2 adsorption–desorption, and zeta potential analyzer. The influences of various factors such as initial concentrations of the dyes, adsorption process time, solution pH, solution temperature and ionic... 

    Type V collagen in scar tissue regulates the size of scar after heart injury

    , Article Cell ; Volume 182, Issue 3 , 2020 , Pages 545-562.e23 Yokota, T ; McCourt, J ; Ma, F ; Ren, S ; Li, S ; Kim, T. H ; Kurmangaliyev, Y. Z ; Nasiri, R ; Ahadian, S ; Nguyen, T ; Tan, X. H. M ; Zhou, Y ; Wu, R ; Rodriguez, A ; Cohn, W ; Wang, Y ; Whitelegge, J ; Ryazantsev, S ; Khademhosseini, A ; Teitell, M. A ; Chiou, P. Y ; Birk, D. E ; Rowat, A. C ; Crosbie, R. H ; Pellegrini, M ; Seldin, M ; Lusis, A. J ; Deb, A ; Sharif University of Technology
    Cell Press  2020
    Abstract
    Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces... 

    Tunable magneto-optical and interfacial defects of Nd and Cr-doped bismuth ferrite nanoparticles for microwave absorber applications

    , Article Journal of Colloid and Interface Science ; Volume 608 , 2022 , Pages 1868-1881 ; 00219797 (ISSN) Yousaf, M ; Lu, Y ; Hu, E ; Wang, B ; Niaz Akhtar, M ; Noor, A ; Akbar, M ; Yousaf Shah, M. A. K ; Wang, F ; Zhu, B ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Tunable microwave absorption characteristics are highly desirable for industrial applications such as antenna, absorber, and biomedical diagnostics. Here, we report BiNdxCrxFe1-2xO3 (x = 0, 0.05, 0.10, 0.15) nanoparticles (NPs) with electromagnetic matching, which exhibit tunable magneto-optical and feasible microwave absorption characteristics for microwave absorber applications. The experimental results and theoretical calculations demonstrate the original bismuth ferrite (BFO) crystal structure, while Nd and Cr injection in the BFO structure may cause to minimize dielectric losses and enhance magnetization by producing interfacial defects in the spinel structure. Nd and Cr co-doping plays... 

    Transport in droplet-hydrogel composites: response to external stimuli

    , Article Colloid and Polymer Science ; Volume 293, Issue 3 , March , 2015 , Pages 941-962 ; 0303402X (ISSN) Mohammadi, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Determination of effective transport properties of droplet-hydrogel composites is essential for various applications. The transport of ions through a droplet-hydrogel composite subjected to an electric field is theoretically studied as an initial step toward quantifying the effective transport properties of droplet-hydrogel composites. A three-phase electrokinetic model is used to derive the microscale characteristics of the polyelectrolyte hydrogel, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which encloses the interior fluid. The surface has the thickness of zero and the electrostatic potential ζ. Standard... 

    Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid

    , Article Journal of Hazardous Materials ; Volume 172, Issue 2-3 , 2009 , Pages 1573-1578 ; 03043894 (ISSN) Ghasemi, S ; Rahimnejad, S ; Setayesh, S. R ; Rohani, S ; Gholami, M. R ; Sharif University of Technology
    Abstract
    TiO2 and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO2 nanoparticles were synthesized by the sol-gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 °C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO2. Dopant ions in the TiO2 structure caused significant absorption shift into the visible region. The results of... 

    Towards greater mechanical, thermal and chemical stability in solid-phase microextraction

    , Article TrAC - Trends in Analytical Chemistry ; Volume 34 , 2012 , Pages 126-138 ; 01659936 (ISSN) Bagheri, H ; Piri-Moghadam, H ; Naderi, M ; Sharif University of Technology
    Abstract
    Solid-phase microextraction (SPME) is a fast, solvent-free technique, which, since its introduction in the 1990s, has been increasingly applied to sample preparation in analytical chemistry. Conventional SPME fibers are fabricated by making a physical bond between the usual silica substrate and the polymeric coatings. However, some applications are limited, as the lifetime and the stability of conventional SPME fibers cannot meet the demands of analyzing relatively non-volatile compounds with more polar moieties. There have been attempts to analyze less volatile compounds by increasing the thermal, physical and chemical stability of the fibers. In this review, we present some new... 

    Thorough tuning of the aspect ratio of gold nanorods using response surface methodology

    , Article Analytica Chimica Acta ; Volume 779 , 2013 , Pages 14-21 ; 00032670 (ISSN) Hormozi Nezhad, M. R ; Robatjazi, H ; Jalali Heravi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work a central composite design based on response surface methodology (RSM) is employed for fine tuning of the aspect ratios of seed-mediated synthesized gold nanorods (GNRs). The relations between the affecting parameters, including ratio of l-ascorbic acid to Au3+ ions, concentrations of silver nitrate, CTAB, and CTAB-capped gold seeds, were explored using a RSM model. It is observed that the effect of each parameter on the aspect ratio of developing nanorods highly depends on the value of the other parameters. The concentrations of silver ions, ascorbic acid and seeds are found to have a high contribution in controlling the aspect ratios of NRs. The optimized parameters led... 

    The role of mscl amphipathic n terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels

    , Article Nature Communications ; Volume 7 , 2016 ; 20411723 (ISSN) Bavi, N ; Cortes, D. M ; Cox, C. D ; Rohde, P. R ; Liu, W ; Deitmer, J. W ; Bavi, O ; Strop, P ; Hill, A. P ; Rees, D ; Corry, B ; Perozo, E ; Martinac, B ; Sharif University of Technology
    Nature Publishing Group  2016
    Abstract
    The bacterial mechanosensitive channel MscL gates in response to membrane tension as a result of mechanical force transmitted directly to the channel from the lipid bilayer. MscL represents an excellent model system to study the basic biophysical principles of mechanosensory transduction. However, understanding of the essential structural components that transduce bilayer tension into channel gating remains incomplete. Here using multiple experimental and computational approaches, we demonstrate that the amphipathic N-terminal helix of MscL acts as a crucial structural element during tension-induced gating, both stabilizing the closed state and coupling the channel to the membrane. We... 

    The role of hippo signaling pathway in physiological cardiac hypertrophy

    , Article BioImpacts ; Volume 10, Issue 4 , 2020 , Pages 251-257 Gholipour, M ; Tabrizi, A ; Sharif University of Technology
    Tabriz University of Medical Sciences  2020
    Abstract
    Introduction: The role of Hippo signaling pathway, which was identified by genetic studies as a key regulator for tissue growth and organ size, in promoting physiological cardiac hypertrophy has not been investigated. Methods: Fourteen male Wistar rats were randomly assigned to the exercise and control groups. The exercise group ran 1 hour per day, 5 days/week, at about 65%-75% VO2max on the motor-driven treadmill with 15ºslope, and the control group ran 15 min/d, 2 days/ week at 9 m/min (0ºinclination), throughout the eight-week experimental period. Forty-eight hours after the last session, hearts were dissected and left ventricles were weighed and stored for subsequent RT-PCR analysis.... 

    Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites

    , Article Radiation Physics and Chemistry ; Volume 146 , 2018 , Pages 5-10 ; 0969806X (ISSN) Bagheri, K ; Razavi, M ; Ahmadi, J ; Kosari, M ; Abolghasemi, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Composites of unsaturated polyester containing 5 wt% nanoclay and different amounts of lead monoxide particles (0, 10, 20, and 30 wt%) were prepared. XRD patterns showed the exfoliation of nanoclay layers in the polymer. Morphological properties of the composites were studied using SEM micrographs. The prepared composites were investigated for their thermal resistance and mechanical properties using thermogravimetric analysis and tensile testing method, respectively. Addition of lead monoxide to the polymer worsened its thermal resistance and tensile properties, whereas the observed negative effects could be moderated by the clay nanoparticle. Gamma attenuation performance of the composites... 

    Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 541 , 2018 , Pages 154-164 ; 09277757 (ISSN) Ahmadi, M. H ; Alhuyi Nazari, M ; Ghasempour, R ; Madah, H ; Shafii, M. B ; Ahmadi, M. A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Various parameters affect thermal conductivity of nanofluid; however, some of them are more influential such as temperature, size and type of nano particles and volumetric concentration. In this study, artificial neural network as well as least square support vector machine (LSSVM) are applied in order to predict thermal conductivity ratio of alumina/water nanofluid as a function of particle size, temperature and volumetric concentration. LSSVM, Self-Organizing Map and Levenberg-Marquardt Back Propagation algorithms are applied to predict thermal conductivity ratio. Obtained results indicated that these algorithms are appropriate tool for thermal conductivity ratio prediction. The...