Loading...
Search for: turbulent-flow
0.01 seconds
Total 148 records

    Oil-soluble drag-reducing polymers [electronic resource]

    , Article Journal of polymer materials ; December 1994, Volume 11, Number 4; Page(s) 239 To 247 Zohurian Mehr, M. J. (Mohammad Jalal) ; Pourjavadi, A ; Nadali, M ; Sharif University of Technology
    Abstract
    This article reviews the oil-soluble polymeric drag-reducing agents (DRAs) with an outlook to their large-scale application in petroleum industry. A general discussion on mechanism of the DR phenomenon and mechanical degradation of the drag reducers in turbulent flow is offered with an emphasis on the molecular parameters. Furthermore, low charge density associating polymers, as a new class of oil-soluble flow improvers, are described  

    Comparison of boundary slip for two variants of immersed boundary method in lattice Boltzmann framework

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 404 , 2014 , Pages 200-216 ; ISSN: 03784371 Farnoush, S ; Manzari, M. T ; Sharif University of Technology
    Abstract
    In this paper, the Immersed Moving Boundary-Lattice Boltzmann (IMB-LB) method is compared with the single relaxation time and multiple-relaxation-time versions of the Immersed Boundary-Lattice Boltzmann (IB-LB) method in terms of the amount of numerical velocity slip produced on solid boundaries. The comparisons are performed for both straight and curved boundaries based on the effects of thickness of virtual domain used in the IB method for the first time, and relaxation time parameter(s) of the LB method. For the straight boundaries, a shear flow problem is studied while for the curved boundaries, a falling circular cylinder in an infinite channel is investigated. First, sensitivities of... 

    Comparative analysis of the boundary transfer method with other near-wall treatments based on the k-ε turbulence model

    , Article European Journal of Mechanics, B/Fluids ; Vol. 44, issue , 2014 , pp. 22-31 ; ISSN: 09977546 Nazif, H. R ; Basirat Tabrizi, H ; Farhadpour, F. A ; Sharif University of Technology
    Abstract
    Accurate description of wall-bounded turbulent flows requires a fine grid near walls to fully resolve the boundary layers. We consider a locally simplified transport model using an assumed near-wall viscosity profile to project the wall boundary conditions using the boundary transfer method. Related coefficients are obtained numerically. By choosing a near-wall viscosity profile, we derive an analytic wall function, which significantly reduces the CPU costs. The performance of this wall function is compared to other near-wall treatments proposed in the literature for two frequently used benchmark cases: near-equilibrium channel flow and flow over a backward-facing step with separation and... 

    Multi-point optimization of lean and sweep angles for stator and rotor blades of an axial turbine

    , Article Proceedings of the ASME Turbo Expo ; Vol. 2C, issue , 2014 Asgarshamsi, A ; Hajilouy-Benisi, A ; Assempour, A ; Pourfarzaneh, H
    Abstract
    In this research, numerical optimization of the rear part of a gas turbine, consisting of a single stage axial turbine is carried out. Automated aerodynamic shape optimization is performed by coupling a CFD flow simulation code with the Genetic Algorithm. An effective multi-point optimization method to improve efficiency and/or pressure ratio of the axial turbine is performed. Some variations of optimization parameters such as lean and sweep angels of stator and rotor blades are accomplished. Furthermore, during the optimization process, three-dimensional and turbulent flow field is numerically investigated using a compressible Navier-Stokes solver. The gas turbine experimental... 

    Finite element volume analysis of propane preheated air flame passing through a minichannel

    , Article ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2014, Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting ; 2014 Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    A hybrid finite-element-volume FEV method is extended to simulate turbulent non-premixed propane air preheated flame in a minichannel. We use a detailed kinetics scheme, i.e. GRI mechanism 3.0, and the flamelet model to perform the combustion modeling. The turbulence-chemistry interaction is taken into account in this flamelet modeling using presumed shape probability density functions PDFs. Considering an upwind-biased physics for the current reacting flow, we implement the physical influence upwinding scheme PIS to estimate the cell-face mixture fraction variance in this study. To close the turbulence closure, we employ the two-equation standard κ-ε turbulence model incorporated with... 

    Details study of ambient wind effect on heat dissipation capacity of thermal-powerplant dry cooling-towers

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM ; Volume 1A , August 3–7 , 2014 , pp. V01AT03A017 ; ISSN: 08888116 ; ISBN: 9780791846216 Darbandi, M ; Behrouzifar, A ; Mirhashemi, A ; Salemkar, H ; Schneider, G. E ; Sharif University of Technology
    Abstract
    Thermal powerplants report a reduction in their dry cooling tower performances due to surrounding wind drafts. Therefore, it is very important to consider the influence of wind velocity in cooling tower design; especially in geographical points with high wind conditions. In this regard, we use the computational fluid dynamics (CFD) tool and simulate a dry cooling tower in different wind velocities of 0, 5 and 10 m/s. To extend our calculations; we also consider the temperature variation of circulating water through the tower heat exchanger or deltas one-by-one. We show that some heat exchangers around the tower cannot reduce the circulating water temperature sufficiently. This causes an... 

    Experimental investigation of viscous drag reduction of superhydrophobic nano-coating in laminar and turbulent flows

    , Article Experimental Thermal and Fluid Science ; Volume 51 , 2013 , Pages 239-243 ; 08941777 (ISSN) Moaven, K ; Rad, M ; Taeibi Rahni, M ; Sharif University of Technology
    2013
    Abstract
    In this research, effects of superhydrophobic nano-coating on frictional drag force have been investigated. The result of this study could be considered to be used as a method in applications concerned with fuel consumption reduction, less CO2 emission and environmental problems as well as speed increase; while, its significance can also be of great use in marine applications. A rotating disc apparatus was used as the experimental set-up to compare the frictional drag force on an aluminum disc with TiO2 superhydrophobic nano-coating and a smooth coatless aluminum disc. The superhydrophobic nano-coating was prepared using sol-gel method and was shown to be able to produce a contact angle of... 

    Computational Simulation of Flow over a Cylinder in Ground Effect, Using PANS

    , Article Life Science Journal ; Volume 10, Issue SUPPL 8 , 2013 , Pages 195-202 ; 10978135 (ISSN) Nirooei, M ; Salimi, M ; Taeibi Rahni, M ; Mahdavimanesh, M ; Sharif University of Technology
    2013
    Abstract
    Recently, very large eddy simulation approach has attracted a great deal of attention among researchers. This approach can be thought of as an intermediate approach in flow field filtering view point compared with Direct Numerical Simulation and Reynolds-Averaged Navier-Stokes. One famous method to this approach is Partially Averaged Navier-Stokes. Early studies have demonstrated the capability of this technique in flow prediction; however, this method still needs to be evaluated under more flow conditions to ensure its reliable performance. In this study, the performance of PANS k-ω method in the simulation of turbulent flow around a cylinder with square cross section close to a flat... 

    Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks

    , Article Canadian Journal of Civil Engineering ; Volume 40, Issue 2 , 2013 , Pages 140-150 ; 03151468 (ISSN) Razmi, A. M ; Bakhtyar, R ; Firoozabadi, B ; Barry, D. A ; Sharif University of Technology
    2013
    Abstract
    The hydraulic efficiency of sedimentation basins is reduced by short-circuiting, circulation zones and bottom particleladen jets. Baffles are used to improve the sediment tank performance. In this study, laboratory experiments were used to examine the hydrodynamics of several baffle configurations. An accompanying numerical analysis was performed based on the 2-D Reynolds-averaged Navier-Stokes equations along with the k-ε turbulence closure model. The numerical model was supplemented with the volume-of-fluid technique, and the advection-diffusion equation to simulate the dynamics of particle-laden flow. Model predictions compared well with the experimental data. An empirical function was... 

    Experimental and numerical investigation of radial flow compressor volute shape effects in characteristics and circumferential pressure non-uniformity

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1753-1764 ; 10263098 (ISSN) Mojaddam, M ; Hajilouy Benisi, A ; Movahhedy, M. R ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    In this article, the effects of volute cross section shape and centroid profile of a radial ow compressor volute were investigated. The performance characteristics of a turbocharger compressor were obtained experimentally by measuring rotor speed and ow parameters at the inlet and outlet of the compressor. The three-dimensional ow field model of the compressor was obtained numerically solving Navier-Stokes equations with SST turbulence model. The compressor characteristic curves were plotted. For model verification, the results were compared with experimental data, showing good agreement. Modification of a volute was performed by introducing a shape factor for volute cross section geometry.... 

    Flow field around side-by-side piers with and without a scour hole

    , Article European Journal of Mechanics, B/Fluids ; Volume 36 , 2012 , Pages 152-166 ; 09977546 (ISSN) Ataie Ashtiani, B ; Aslani Kordkandi, A ; Sharif University of Technology
    2012
    Abstract
    The present study provides the experimental results of the flow pattern around two-circular piers positioned in side-by-side arrangement. The experiments were performed for two bed configurations (with and without a scour hole). Velocities were measured by an Acoustic Doppler Velocimeter (ADV). Flat bed and scour hole were frozen by synthetic glue to facilitate the performance of the experiments. The contours and distributions of the time-averaged velocity components, turbulence intensities, turbulence kinetic energy, and Reynolds stresses at different horizontal and vertical planes are presented. Streamlines and velocity vectors obtained from time-averaged velocity fields are used to show... 

    Numerical simulation of laminar and turbulent two-phase flow in pressure-swirl atomizers

    , Article AIAA Journal ; Volume 50, Issue 10 , 2012 , Pages 2091-2101 ; 00011452 (ISSN) Nouri Borujerdi, A ; Kebriaee, A ; Sharif University of Technology
    AIAA  2012
    Abstract
    This paper has developed an axisymmetric laminar and turbulent two-phase flow solver to simulate pressure-swirl atomizers. Equations include the explicit algebraic Reynolds stress model, the Reynolds-averaged Navier-Stokes, and the level set equation. Applying a high-order compact upwind finite difference scheme with the level set equation being culminated to capture the interface between air-liquid two-phase flow and decreasing the mass conservation error in the level set equation. The results show that some recirculation zones are observed close to the wall in the swirl chamber and to the axis. This model can predict converting the Rankin vortex in the swirl chamber to the forced vortex in... 

    Dual-code solution procedure for efficient computing equilibrium hypersonic axisymmetric transitional/turbulent flows

    , Article Aerospace Science and Technology ; Volume 21, Issue 1 , September , 2012 , Pages 64-74 ; 12709638 (ISSN) Hejranfar, K ; Esfahanian, V ; Kamali Moghadam, R ; Sharif University of Technology
    Elsevier  2012
    Abstract
    An appropriate combination of the thin-layer Navier-Stokes (TLNS) and parabolized Navier-Stokes (PNS) solvers is used to accurately and efficiently compute hypersonic transitional/turbulent flowfields of perfect gas and equilibrium air around blunt-body configurations. The TLNS equations are solved in the nose region to provide the initial data plane needed for the solution of the PNS equations. Then the PNS equations are employed to efficiently compute the flowfield for the afterbody region by using a space marching technique. Both the TLNS and the PNS equations are numerically solved by using the implicit non-iterative finite-difference algorithm of Beam and Warming. A shock fitting... 

    Levels of complexity in turbulent time series for weakly and high Reynolds number

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 391, Issue 11 , 2012 , Pages 3151-3158 ; 03784371 (ISSN) Shayeganfar, F ; Sharif University of Technology
    2012
    Abstract
    We use the detrended fluctuation analysis (DFA), the detrended cross correlation analysis (DCCA) and the magnitude and sign decomposition analysis to study the fluctuations in the turbulent time series and to probe long-term nonlinear levels of complexity in weakly and high turbulent flow. The DFA analysis indicate that there is a time scaling region in the fluctuation function, segregating regimes with different scaling exponents. We discuss that this time scaling region is related to inertial range in turbulent flows. The DCCA exponent implies the presence of power-law cross correlations. In addition, we conclude its multifractality for high Reynold's number in inertial range. Further, we... 

    Simulation of turbulent swirling flow in convergent nozzles

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 258-265 ; 10263098 (ISSN) Nouri-Borujerdi, A ; Kebriaee, A ; Sharif University of Technology
    Abstract
    This work simulates the turbulent boundary layer of an incompressible viscous swirling flow through a conical chamber. To model the pressure gradient normal to the wall, the radial and tangential velocity components across the boundary layer have been calculated by both the integral and numerical methods. The numerical solution is accomplished by finite difference, based on the finite volume method. The results show that the radial and tangential boundary layer thicknesses depend on the velocity ratios, Reynolds number and nozzle angle. The peak of radial and tangential boundary layer thicknesses are located at zL≈0.2 and zL≈0.8 from the nozzle inlet, respectively. Due to the short length of... 

    Drag performance of divergent tubular-truncated cones: A shape optimization study

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 1 , 2012 , Pages 105-112 ; 17351472 (ISSN) Lotfi, A ; Rad, M ; Sharif University of Technology
    2012
    Abstract
    The use of more efficient energy consuming devices, which are closely associated with reduction of environmental pollution, has gained significant interest in the recent decades. The reduction of drag coefficient also improves safety and durability of environmental structures subjected to high-velocity fluid flow, and causes the noise and vibration to decrease as well. This paper describes the efficiency improvement in energy management by means of reducing drag coefficient in a practical divergent tubular- truncated cone. Extensive numerical simulations with emphasis on the shape optimization study were performed in order to find minimum drag coefficient for both laminar and turbulent flows... 

    Simulating fluid-solid interaction problems using an immersed boundary-SPH method

    , Article Particle-Based Methods II - Fundamentals and Applications, 26 October 2011 through 28 October 2011 ; Octobe , 2011 , Pages 954-965 ; 9788489925670 (ISBN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    Abstract
    In this work, the Immersed Boundary Method (IBM) is adapted and implemented in the context of Smoothed Particle Hydrodynamics (SPH) method to study moving solid bodies in an incompressible fluid flow. The proposed computational algorithm is verified by solving a number of benchmark particulate flow problems. The results are also compared with those obtained using the same SPH scheme along with a direct solid boundary imposition technique  

    On the effect of inflow conditions in simulation of a turbulent round jet

    , Article Archive of Applied Mechanics ; Volume 81, Issue 10 , 2011 , Pages 1439-1453 ; 09391533 (ISSN) Faghani, E ; Saemi, S. D ; Maddahian, R ; Farhanieh, B ; Sharif University of Technology
    Abstract
    This paper investigates the impact of the inflow conditions on simulations of a round jet discharging from a wall into a large space. The fluid dynamic characteristics of a round jet are studied numerically. A numerical method based on the control volume approach with collocated grid arrangement is employed. The k-ε model is utilized to approximate turbulent stresses by considering six different inlet conditions. The velocity field is presented, and the rate of decay at the jet centerline is determined. The results showed that inflow conditions had a strong influence on the jet characteristics. This paper also investigates both sharp-edged and contoured nozzles. The effects of velocity,... 

    Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow

    , Article Experimental Thermal and Fluid Science ; Volume 35, Issue 3 , April , 2011 , Pages 495-502 ; 08941777 (ISSN) Zamzamian, A ; Oskouie, S. N ; Doosthoseini, A ; Joneidi, A ; Pazouki, M ; Sharif University of Technology
    2011
    Abstract
    Nanofluid is the term applied to a suspension of solid, nanometer-sized particles in conventional fluids; the most prominent features of such fluids include enhanced heat characteristics, such as convective heat transfer coefficient, in comparison to the base fluid without considerable alterations in physical and chemical properties. In this study, nanofluids of aluminum oxide and copper oxide were prepared in ethylene glycol separately. The effect of forced convective heat transfer coefficient in turbulent flow was calculated using a double pipe and plate heat exchangers. Furthermore, we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical... 

    Numerical Simulation of Turbulent Flow in Annulus with Rotation of an Inner Cylinder in High Angular Speed

    , M.Sc. Thesis Sharif University of Technology Asgarshamsi, Abolhassan (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    In this thesis velocity and temperature fields of concentric cylinders with rotation of inner wall have been investigated numerically. Air enters the gap between cylinders and attains fully developed in both velocity and temperature fields after certain lengths. Adiabatic and constant heat flux boundary conditions have been applied and Nusselt number was calculated. In order to analyze the variations of velocity and temperature fields, different angular velocities at constant axial Reynolds number and different axial velocities at constant angular velocity have been investigated. The turbulent stresses were approximated with k ?? ...