Loading...
Search for: sulfone
0.008 seconds
Total 65 records

    Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification

    , Article Chemosphere ; Volume 290 , 2022 ; 00456535 (ISSN) Vatanpour, V ; Jouyandeh, M ; Akhi, H ; Mousavi Khadem, S. S ; Ganjali, M. R ; Moradi, H ; Mirsadeghi, S ; Badiei, A ; Esmaeili, A ; Rabiee, N ; Habibzadeh, S ; Koyuncu, I ; Nouranian, S ; Formela, K ; Saeb, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM, FTIR, TGA, and XPS analyses. Morphology, water contact angles, mean pore sizes, overall porosity, tensile strengths, water flux, antifouling and the dye separation performances of the PEI-SiO2/PSF membranes were also studied. The PEI-SiO2 nanoparticles were uniformly... 

    A laboratory approach to enhance oil recovery factor in a low permeable reservoir by active carbonated water injection

    , Article Energy Reports ; Volume 7 , 2021 , Pages 3149-3155 ; 23524847 (ISSN) Chen, X ; Paprouschi, A ; Elveny, M ; Podoprigora, D ; Korobov, G ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, different injectivity scenarios were experimentally investigated in a coreflooding system to observe the efficiency of each method in laboratory conditions. Surfactant flooding, CO2 injection, carbonated water injection (CWI), active carbonated water injection (ACWI), after water flooding were investigated through the coreflooding system. First, it is necessary to optimize the surfactant concentration and then use it in ACWI injection. To do this, linear alkylbenzene sulfonic acid (LABSA) was used as a cationic surfactant at different concentrations. It was observed that 0.6 PV concentration of LABSA had an optimum result as increasing the surfactant concentration would not be... 

    CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization

    , Article Chemical Engineering Research and Design ; Volume 176 , 2021 , Pages 49-59 ; 02638762 (ISSN) Ahmadipouya, S ; Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Institution of Chemical Engineers  2021
    Abstract
    In this study, NH2-MIL-101(Al) metal-organic frameworks (MOFs) covered with 3-aminopropyltriethoxysilane (APTES) were incorporated into the polyethersulfone (PES) to produce mixed-matrix membranes (MMMs) for CO2 separation. The APTES functionalization was performed to improve the MOF dispersion in the PES matrix. Different analyses such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM) revealed that the MOFs surface successfully functionalized with APTES. An improvement in CO2/CH4 separation efficiency was observed in MMMs, and the performance... 

    CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization

    , Article Chemical Engineering Research and Design ; Volume 176 , 2021 , Pages 49-59 ; 02638762 (ISSN) Ahmadipouya, S ; Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Institution of Chemical Engineers  2021
    Abstract
    In this study, NH2-MIL-101(Al) metal-organic frameworks (MOFs) covered with 3-aminopropyltriethoxysilane (APTES) were incorporated into the polyethersulfone (PES) to produce mixed-matrix membranes (MMMs) for CO2 separation. The APTES functionalization was performed to improve the MOF dispersion in the PES matrix. Different analyses such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM) revealed that the MOFs surface successfully functionalized with APTES. An improvement in CO2/CH4 separation efficiency was observed in MMMs, and the performance... 

    The identification and performance assessment of dominant bacterial species during linear alkylbenzene sulfonate (LAS)-biodegradation in a bioelectrochemical system

    , Article Bioprocess and Biosystems Engineering ; Volume 44, Issue 12 , 2021 , Pages 2579-2590 ; 16157591 (ISSN) Askari, A ; Vahabzadeh, F ; Mardanpour, M. M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The anionic surfactant linear alkylbenzene sulfonate (LAS) is a major chemical constituent of detergent formulation. Regarding the recalcitrant nature of sulfonoaromatic compounds, discharging these substances into wastewater collection systems is a real environmental issue. A study on LAS biodegradation based on bioelectrochemical treatment and in the form of developing a single-chamber microbial fuel cell with air cathode is reported in the present work. Pretreatment study showed LAS concentration of 60 ppm resulted in the highest anaerobic LAS removal of 57%; so, this concentration was chosen to run the MFC. After the sustained anodic biofilm was formed, LAS degradation rate during 4 days... 

    Quantitative determination of linear alkylbenzene sulfonate (LAS) concentration and simultaneous power generation in a microbial fuel cell-based biosensor

    , Article Journal of Cleaner Production ; Volume 294 , 2021 ; 09596526 (ISSN) Askari, A ; Vahabzadeh, F ; Mardanpour, M. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Linear alkylbenzene sulfonate (LAS), one of the most widely used synthetic surfactants in laundry detergent industry, is considered a hazardous contaminant in wastewater. In the present study, a microbial fuel cell (MFC) based biosensor is developed to quantitively determine the LAS concentration in wastewater. To do so, the developed MFC is fed with LAS concentration of 60 mg l−1. Finally, a sustained biofilm is formed after almost 34 days and the highest open circuit potential of 425 mV is recorded. The maximum power and current densities of 75 mW m−3 and 663 mA m−3 are obtained, respectively; and the internal resistance of the MFC-based biosensor is calculated to be about 1 kΩ. After 98... 

    Relative permeability measurement in carbonate rocks, the effects of conventional surfactants vs. Ionic liquid-based surfactants

    , Article Journal of Dispersion Science and Technology ; Volume 41, Issue 12 , 2020 , Pages 1797-1811 Zabihi, S ; Faraji, D ; Rahnama, Y ; Zeinolabedini Hezave, A ; Ayatollahi, S ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    In the present study, the effect of two different kinds of surfactants namely conventional (Sodium dodecyl benzene sulfonate (SDBS)) and ionic liquid (IL)-based surfactants are investigated on the tertiary oil recovery using relative permeability concept. In this way, besides the Amott wettability index measurement, unsteady state core flooding tests are performed to not only find the effect of surfactant injection on tertiary oil recovery, but also to investigate their effects on relative permeability of carbonate rocks. In addition, for more reliable conclusions regarding the possible mechanisms, interfacial tension (IFT), compatibility and emulsification tests are carried out as a... 

    Experimental investigation on asphaltene biodegradability using microorganism: cell surface properties’ approach

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 9, Issue 2 , 2019 , Pages 1413-1422 ; 21900558 (ISSN) Iraji, S ; Ayatollahi, S ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Asphaltene precipitation is known to be responsible for serious challenges in oil industry such as wellbore damage, oil flow reduction, and plugging of transportation lines. The traditional methods to remove asphaltene deposition are mostly based on chemical solvent. One of the recent proposed green and cost–effect remedial methods is the application of microorganisms capable of consuming the heavy hydrocarbon chains. The cell surface hydrophobicity among others effectively manipulates the efficiency of the microorganism for asphaltene degradation. Besides, surface active agents would affect the microorganism adhesion and cell surface properties, and alters its hydrophobicity. Investigating... 

    Investigating fluid invasion control by Colloidal Gas Aphron (CGA) based fluids in micromodel systems

    , Article Journal of Natural Gas Science and Engineering ; Volume 66 , 2019 , Pages 1-10 ; 18755100 (ISSN) Pasdar, M ; Kamari, E ; Kazemzadeh, E ; Ghazanfari, M. H ; Soleymani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Recently, Colloidal Gas Aphron (CGA) based fluids have been introduced to further develop depleted hydrocarbon reservoirs. This fluid system has been employed in an attempt to control drilling fluid invasion and, thus, reducing formation damage occurred during drilling operations. Understanding the mechanisms of fluid invasion control is of great importance for successful design and application of CGA-based fluids in drilling operations. Although fluid flow of conventional foams has been studied extensively in the available literature, little attention has been paid to CGA fluids flow, especially in heterogeneous fractured porous media. Here, an experimental study was conducted to achieve... 

    Impact of ionic composition on modulating wetting preference of calcite surface: Implication for chemically tuned water flooding

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 568 , 2019 , Pages 470-480 ; 09277757 (ISSN) Saeedi Dehaghani, A. H ; Badizad, M. H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Despite previous researches on ion-engineered waterflooding (IEWF), its underlying mechanisms are not fully understood, particularly in presence of additives, like surfactants. This paper concerned with the contribution of Ca 2+ , Mg 2+ , SO 4 2- and Na + into altering wettability of oil-wet carbonate minerals towards water preferred state. As a mechanistic study, an experiment workflow was conducted to probe the impact of ions' concentrations in SW, either with or without sodium dodecylbenzene sulfonate (SDBS) which is an anionic surfactant. At first, contact angle (CA) measurement was carried out to evaluate the degree of wettability reversal upon treating the oil-aged calcite slabs with... 

    Monitoring the role of polymer and surfactant concentrations on bubble size distribution in colloidal gas aphron based fluids

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 556 , 2018 , Pages 93-98 ; 09277757 (ISSN) Pasdar, M ; Kazemzadeh, E ; Kamari, E ; Ghazanfari, M. H ; Soleymani, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Colloidal gas aphron (CGA) based fluids have recently been introduced to develop depleted hydrocarbon reservoirs due to their ability in controlling fluid losses. Bubbles size of CGAs plays an important role in pore blockage ability as the controlling mechanism in fluid invasion reduction. However, fundamental understanding of how bubble size distribution is controlled by polymer and surfactant concentrations is not well discussed in the available literature. Almost all reported experiences on CGAs sizing were conducted on single bubble behavior, and little attention has been given to the variation of bubble size distribution (BSD) of CGAs at different levels of polymer/surfactant... 

    Adsorption of sodium dodecyl benzene sulfonate onto carbonate rock: Kinetics, equilibrium and mechanistic study

    , Article Journal of Dispersion Science and Technology ; Volume 39, Issue 5 , 2018 , Pages 687-699 ; 01932691 (ISSN) Hemmati, N ; Tabzar, A ; Ghazanfari, M. H ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    In this study, kinetics, equilibrium, and mechanisms of SDBS adsorption onto carbonate rock in presence/absence of alkaline/electrolyte, which is not well discussed in the available literature, is analyzed through batch experiments. Analysis of kinetic data showed that adsorption rate of SDBS onto carbonate is controlled by both boundary layer and intraparticle diffusion, also adsorption kinetics meets pseudo second-order model. The coefficient of kinetic model is a linear function of initial and equilibrium concentrations. The adsorption isotherm experiences four distinct regions, with a rising trend in the first regions until reaching to a maximum after which decreases slightly, as the... 

    Investigating the synergic effects of chemical surfactant (SDBS) and biosurfactant produced by bacterium (Enterobacter cloacae) on IFT reduction and wettability alteration during MEOR process

    , Article Journal of Molecular Liquids ; Volume 256 , 2018 , Pages 277-285 ; 01677322 (ISSN) Hajibagheri, F ; Hashemi, A ; Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In the current study, a novel approach which takes into account the effectiveness of both convectional surfactants and biosurfactants was investigated. The biosurfactant produced by Enterobacter cloacae strain was utilized concomitant with conventional surfactant (sodium dodecyl benzene sulfonate (SDBS)) to evaluate its capability to reduce the SDBS adsorption on rock surface (biosurfactant acts as sacrificial agent) or synergistically enhance the effectiveness of the SDBS. In this regard, the wettability alteration and interfacial tension (IFT) measurements and calculation of spreading coefficient were performed considering two different scenarios. In the first scenario, SDBS was added to... 

    Solution synthesis of CuSbS2 nanocrystals: a new approach to control shape and size

    , Article Journal of Alloys and Compounds ; Volume 736 , 2018 , Pages 190-201 ; 09258388 (ISSN) Moosakhani, S ; Sabbagh Alvani, A. A ; Mohammadpour, R ; Ge, Y ; Hannula, S. P ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Chalcostibite copper antimony sulfide (CuSbS2) micro- and nanoparticles with a different shape and size have been prepared by a new approach to hot injection route. In this method, sulfur in oleylamine (OLA) is employed as a sulfonating agent providing a simple route to control the shape and size of the particles, which enables the optimization of CuSbS2 for a variety of applications. The sulfur to metallic precursor ratio appears to be one of the most effective parameters along with the temperature and time for controlling the size and morphology of the particles. The growth mechanism study shows in addition to the CuSbS2 phase the presence of not previously observed intermediate phases... 

    Experimental investigation on asphaltene biodegradability using microorganism: cell surface properties’ approach

    , Article Journal of Petroleum Exploration and Production Technology ; 2018 ; 21900558 (ISSN) Iraji, S ; Ayatollahi, S ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Asphaltene precipitation is known to be responsible for serious challenges in oil industry such as wellbore damage, oil flow reduction, and plugging of transportation lines. The traditional methods to remove asphaltene deposition are mostly based on chemical solvent. One of the recent proposed green and cost–effect remedial methods is the application of microorganisms capable of consuming the heavy hydrocarbon chains. The cell surface hydrophobicity among others effectively manipulates the efficiency of the microorganism for asphaltene degradation. Besides, surface active agents would affect the microorganism adhesion and cell surface properties, and alters its hydrophobicity. Investigating... 

    Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue

    , Article RSC Advances ; Volume 6, Issue 13 , 2016 , Pages 10430-10437 ; 20462069 (ISSN) Pourjavadi, A ; Nazari, M ; Kabiri, B ; Hosseini, S. H ; Bennett, C ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Porous nanocomposite hydrogels were prepared using CaCO3 particles as solid porogens. The hydrogels were prepared by polymerization and grafting of acrylamide and 2-acrylamido-2-methylpropane sulfonic acid onto the starch in the presence of CaCO3 and graphene oxide. CaCO3 solid porogens were then removed by washing with acid and porous structures were obtained. The prepared hydrogels were used as adsorbents for methylene blue as a model cationic dye; and a very high adsorption capacity, up to 714.29 mg g-1, was obtained. Kinetics and isotherms of adsorption and the effect of porosity of hydrogel as well as other experimental conditions were also investigated. The prepared adsorbents were... 

    Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 586-594 ; 09284931 (ISSN) Mahmoudifard, M ; Soudi, S ; Soleimani, M ; Hosseinzadeh, S ; Esmaeili, E ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to... 

    Swelling and mechanical behavior of nanoclay reinforced hydrogel: single network vs. full interpenetrating polymer network

    , Article Polymer Bulletin ; Volume 72, Issue 7 , March , 2015 , Pages 1663-1681 ; 01700839 (ISSN) Kheirabadi, M ; Bagheri, R ; Kabiri, K ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Despite the various uses of hydrogels, one of their weaknesses is the poor gel strength. To overcome this restriction, the current study has focused on simultaneously employing an interpenetrating polymer network (IPN) structure and nanocomposite hydrogels. Through this approach, the influence of nanofiller in the single network and IPN hydrogel properties was also studied in detail. For this purpose, a novel full interpenetrating polymer network (IPN) hydrogel nanocomposite based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS)/acrylic acid (AA)–sodium acrylate (AANa) was synthesized in two steps through a facile solution polymerization with incorporation of modified bentonite (MBE) as... 

    Synthesis and application of diethanolamine-functionalized polystyrene as a new sorbent for the removal of p-toluenesulfonic acid from aqueous solution

    , Article Journal of Industrial and Engineering Chemistry ; Volume 30 , October , 2015 , Pages 281-288 ; 1226086X (ISSN) Davarpanah, M ; Ahmadpour, A ; Rohani Bastami, T ; Dabir, H ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2015
    Abstract
    Polystyrene resin was functionalized by diethanolamine for the efficient removal of p-toluenesulfonic acid (p-TSA) from aqueous solution. Functionalized adsorbent (DEA-PS) was characterized by elemental analysis, Fourier transform infrared spectroscopy, point of zero charge measurement and field-emission scanning electron microscopy. According to the results, maximum removal of p-TSA was observed at the pH range of 2.5-5. The adsorption kinetics of p-TSA onto DEA-PS was represented by pseudo-first-order model and the equilibrium data followed Langmuir model well. The adsorption process was endothermic and spontaneous, along with the positive change of entropy. The regeneration of DEA-PS was... 

    Fabrication of MEA based on sulfonic acid functionalized carbon supported platinum nanoparticles for oxygen reduction reaction in PEMFCs

    , Article RSC Advances ; 2015 , Pages 85775-85784 ; 20462069 (ISSN) Gharibi, H ; Yasi, F ; Kazemeini, M ; Heydari, A ; Golmohammadi, F ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The Nafion ionomer affects the efficiency of the platinum (Pt) catalyst by blocking the active sites thereby restricting the gas permeability of the catalyst layer; but, there is a limitation in the quantity of Nafion ionomer that needs to be added without affecting the cell performance. Sulfonation of carbon-supported catalysts as mixed electronic and protonic conductors has been reported to be an efficient way to increase the triple-phase boundaries. In order to improve the utilization and activity of cathodic catalysts in the oxygen reduction reaction (ORR), Pt nanoparticles were loaded on a mixture of Vulcan XC-72R and MWCNTs, which were functionalized in a mixture of 96% sulfuric acid...