Loading...
Search for: substrates
0.018 seconds
Total 336 records

    Comparison of engineered cartilage based on BMSCs and chondrocytes seeded on PVA-PPU scaffold in a sheep model

    , Article Journal of Biomedical Materials Research - Part B Applied Biomaterials ; Volume 110, Issue 11 , 2022 , Pages 2411-2421 ; 15524973 (ISSN) Taghizadehjahed, M ; Sepahdar, A ; Rabiee, N ; Nazbar, A ; Farzad Mohajeri, S ; Dehghan, M. M ; Shokrgozar, M. A ; Majidi, M ; Mardjanmehr, S. H ; Aminianfar, H ; Akbari Javar, H ; Bonakdar, S ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    In this study, polyvinyl alcohol hydrogel chains were crosslinked by polyurethane in order to synthesize a suitable substrate for cartilage lesions. The substrate was fully characterized, and in vitro and in vivo investigations were conducted based on a sheep model. In vitro tests were performed based on the chondrocyte cells with the Alcian Blue and safranin O staining in order to prove the presence of proteoglycan on the surface of the synthesized substrate, which has been secreted by cultures of chondrocytes. Furthermore, the expression of collagen type I, collagen type II, aggrecan, and Sox9 was presented in the chondrocyte cultures on the synthesized substrate through RT-PCR. In... 

    Impact of temperature and etching methods on surface roughness, topography, and composition of glass micromodels

    , Article Energy and Fuels ; Volume 36, Issue 23 , 2022 , Pages 14066-14078 ; 08870624 (ISSN) Shirazi, M ; Masihi, M ; Mahani, H ; Tamsilian, Y ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Fluid flow in porous media is affected by surface characteristics such as roughness and topography. In this work, to simulate the surface of natural porous structures in transparent interconnected media like micromodels, various degrees of roughness have been artificially created on flat glass substrates via different methods of laser ablation, cream etching, combination of laser ablation and cream etching, and hydrofluoric acid (HF) etching. The obtained surfaces by each method were characterized in detail via field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX/EDS), and surface profilometry. The impact of high... 

    Wettability and rheological behavior of low Ag lead-free SAC/graphene and cobalt-graphene nanocomposite solder paste

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 53, Issue 8 , 2022 , Pages 2811-2822 ; 10735623 (ISSN) Tamizi, M ; Movahedi, M ; Kokabi, A. H ; Miyashita, Y ; Azghandi Rad, S ; Sharif University of Technology
    Springer  2022
    Abstract
    The impacts of dopant nanoparticles, graphene nanosheets (GNSs) and cobalt decorated-graphene nanosheets (CoGNSs), were studied in relation to the wettability and rheological behavior in low-Ag lead-free SAC0307 (Sn–0.3Ag–0.7Cu) solder paste. The solidification range of the solders was evaluated using differential scanning calorimetry. Phase identification in the solder bulk and interface of the solder and copper substrate was carried out by X-ray diffraction and energy-dispersive X-ray spectroscopy. Spreading properties and reactive wetting behavior along with the rheological properties of the solders were also studied. Results showed that the addition of both nanoparticles did not... 

    Selective fabrication of robust and multifunctional super nonwetting surfaces by diverse modifications of zirconia-ceria nanocomposites

    , Article Langmuir ; Volume 38, Issue 30 , 2022 , Pages 9195-9209 ; 07437463 (ISSN) Esmaeilzadeh, P ; Zandi, A ; Ghazanfari, M. H ; Khezrnejad, A ; Fatemi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The creation of surfaces with various super nonwetting properties is an ongoing challenge. We report diverse modifications of novel synthesized zirconia-ceria nanocomposites by different low surface energy agents to fabricate nanofluids capable of regulating surface wettability of mineral substrates to achieve selective superhydrophobic, superoleophobic-superhydrophilic, and superamphiphobic conditions. Surfaces treated with these nanofluids offer self-cleaning properties and effortless rolling-off behavior with sliding angles ≤7° for several liquids with surface tensions between 26 and 72.1 mN/m. The superamphiphobic nanofluid coating imparts nonstick properties to a solid surface whereby... 

    Effects of resonator geometry and substrate stiffness on the tunability of a deformable microwave metasurface

    , Article AEU - International Journal of Electronics and Communications ; Volume 146 , 2022 ; 14348411 (ISSN) Karimi Mahabadi, R ; Goudarzi, T ; Fleury, R ; Sohrabpour, S ; Naghdabadi, R ; Sharif University of Technology
    Elsevier GmbH  2022
    Abstract
    Tunable metasurfaces can shift their resonant frequency through different approaches, one of which is applying mechanical deformations. Here, we show the effects of two key factors on the tunability of deformable metasurfaces; the resonator geometry and substrate stiffness. To show the effects, we compared the tunability of unit cells with three resonator geometries and three common substrates at microwave frequencies from 1 GHz to 10 GHz under a given mechanical deformation. We showed that the resonator geometry affects the deformation field, as a consequence, causes different resonant frequency shifts. Moreover, it affects the stress field in the metasurface which in turn limits the... 

    Rectilinear motion of carbon nanotube on gold surface

    , Article International Journal of Mechanical Sciences ; Volume 217 , 2022 ; 00207403 (ISSN) Kianezhad, M ; Youzi, M ; Vaezi, M ; Nejat Pishkenari, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    For many years, it has been a significant concern for nanoscience researchers to synthesize nanomachines with steerable motion. Despite the notable number of studies on the motion of nanocars on a surface, the motion characteristics of carbon nanotubes received less attention. Remarkable features such as symmetry, strength, and stiffness made carbon nanotubes (CNTs) a proper option as wheels in the nanocars. In this paper, for the first time, the motion of carbon nanotube on a gold substrate and its advantages over previous wheels such as fullerene and p-carborane are investigated. We demonstrate that contrary to the other wheels, CNT moves in a directed path, making them an ideal option as... 

    Investigation into the effect of substrate material on microstructure and optical properties of thin films deposited via magnetron sputtering technique

    , Article Ceramics International ; Volume 48, Issue 5 , 2022 , Pages 6277-6286 ; 02728842 (ISSN) Mashaiekhy Asl, J ; Nemati, A ; Hadi, I ; Mirdamadi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study aims at investigating the effect of the substrate material on growth mechanism and also microstructure of Ta2O5 thin films. For this purpose, atomic force microscopy, scanning electron microscopy, and interferometry analyses were implemented to reveal the influence of silicon wafer and amorphous BK7 glass substrates on the nucleation and growth mechanisms of Ta2O5 thin films deposited via the radio frequency magnetron sputtering technique. Results indicated that those films with finer morphologies had relatively higher nucleation densities. Compared with BK7 glass substrate, crystals formed on the silicon wafer were shown to be finer and had lower mean areas in more nucleation... 

    Ethylene and cyclohexane co-production in the fixed-bed catalytic membrane reactor: Experimental study and modeling optimization

    , Article Journal of Membrane Science ; Volume 643 , 2022 ; 03767388 (ISSN) Karimi Darvanjooghi, M. H ; Malakootikhah, M ; Magdouli, S ; Brar, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, a fixed-bed catalytic membrane reactor was used for the production of ethylene and cyclohexane from ethane and benzene. A two-dimensional non-isothermal mathematical model was used for estimating the performance of the membrane reactor. Furthermore, the effect of inlet temperature (720–1080 K), feed molar ratio (3–10) and the reactor spacetime (1–76 kgCat.s/mol) was studied on the conversion of ethane to ethylene and benzene to cyclohexane. The results of modeling showed that with the increase of inlet temperature the conversion of both (de)-hydrogenation reactions increased and the 95% of ethane conversion was achieved when the molar ratio of benzene/ethane was fixed on 3.... 

    Mechanism of the motion of nanovehicles on hexagonal boron-nitride: A molecular dynamics study

    , Article Computational Materials Science ; Volume 207 , 2022 ; 09270256 (ISSN) Vaezi, M ; Nejat Pishkenari, H ; Nemati, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Nanocars have been proposed to transport nanomaterials on the surface. Study of the mechanism of the motion of nanocars has attracted a lot of interests due to the potential ability of these nano-vehicles in the construction of nanostructures with bottom-up approach. Using molecular dynamics simulations, we study the motion of two nano-vehicles named “Nanocar” and “Nanotruck” on hexagonal boron-nitride monolayer. The obtained results reveals that, boron-nitride is an appropriate option to obtain higher mobility of nanocars compared with metal substrates. Considering different temperatures reveals that nanocars start to move on the BN at 200 K, while long range motions are observed at 400 K... 

    Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets

    , Article Journal of Alloys and Compounds ; Volume 904 , 2022 ; 09258388 (ISSN) Soltani, H ; Bahiraei, H ; Ghasemi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, the effect of electrodeposition time on the super-capacitive performance of three-dimensional (3D) MnO2/g-C3N4 heterostructured electrodes was investigated. MnO2 nanoparticles were electrodeposited on the g-C3N4 nanosheets drop-casted on the Ni foam substrate. The microstructural analysis, carried out by FE-SEM and TEM, confirmed the homogeneous distribution of MnO2 nanoparticles on g-C3N4 nano-sheet layers. The electrochemical capacitive performances of the MnO2/g-C3N4 electrodes were evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge tests, and electrochemical impedance spectra (EIS). The obtained results suggested that the supercapacitor (SC) performance of all... 

    Detection of molecular vibrations of atrazine by accumulation of silver nanoparticles on flexible glass fiber as a surface-enhanced Raman plasmonic nanosensor

    , Article Optical Materials ; Volume 128 , 2022 ; 09253467 (ISSN) Eskandari, V ; Kordzadeh, A ; Zeinalizad, L ; Sahbafar, H ; Aghanouri, H ; Hadi, A ; Ghaderi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Surface-Enhanced Raman Spectroscopy (SERS) is a sensitive vibration spectroscopy method applied to analyze a variety of analytes, including toxins and pesticides. The SERS method is an accurate method for detecting significantly low concentrations of biomaterials and chemicals. In the present study, in order to detect atrazine pesticide, the glass fiber substrates coated with silver nanoparticles have been used as SERS plasmonic nanosensors. First, silver nanoparticles were prepared by applying a chemical approach named the Tollens' method, and the SERS plasmonic substrates (SPS) were fabricated by depositing the colloidal silver solution on a glass fiber substrate. The SERS plasmonic... 

    Electro-optical properties of APS and APhS linkers on silicon thin film: A DFT study

    , Article Applied Surface Science ; Volume 605 , 2022 ; 01694332 (ISSN) Assareh Pour, F ; Darvish, G ; Faez, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    APS (3-Aminopropyl) trimethoxysilane) and APhS (p-Aminophenyl) trimethoxysilane) are the most commonly used linkers on a silicon surface. We investigate the surface properties of the structures, including APS or APhS on a silicon substrate. The studied structures consist of APS or APhS linkers with one, two, or three bonds with a substrate, which is a thin layer of Si with crystal orientation 〈1 0 0〉 or 〈1 1 1〉. Using a first-principles study based on density functional theory (DFT), we investigated the electronic and optical properties of the silicon-linker interface, such as interface states, orbital location, dielectric function, and photon absorption. The effects of linker type, number... 

    Analytical study of Dirac type dispersion in simple periodic waveguide structures for leaky-wave applications

    , Article IEEE Access ; Volume 10 , 2022 , Pages 25707-25717 ; 21693536 (ISSN) Rezaee, S ; Memarian, M ; Eleftheriades, G. V ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this work, we present a study on the existence of Dirac type dispersion in the simplest of periodic metallic waveguide structures. It is shown that periodic repetitions of two dissimilar waveguides (WGs) can be properly designed to lead to a Dirac type dispersion. A simple theory using circuit modeling is presented to find the condition for Dirac point operation. In addition, mode-matching followed by full-wave simulations validate that the band structure matches that of the theory and shows that a Dirac dispersion can be realized. A Dirac Leaky-Wave Antenna (DLWA) is then implemented using this simple arrangement in substrate-integrated-waveguide (SIW) technology. This DLWA has the... 

    A novel analytical model for a circularly-polarized, ferrite-based slot antenna by solving an integral equation for the electric field on the circular slot

    , Article Waves in Random and Complex Media ; Volume 32, Issue 2 , 2022 , Pages 509-528 ; 17455030 (ISSN) Heydari, M.B ; Ahmadvand, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    We propose and analyze a circularly polarized slot antenna built on a ferrite substrate which is saturated normal to its plane and metalized on both sides. The antenna is built by etching a circular slot in the top metal layer. The antenna operates in the frequency range where the effective permeability of ferrite is negative. An accurate analytical model is derived for the antenna by solving the integral equation for the electric field on the circular slot. The results obtained are in good agreement with numerical simulations. Using the analytical results, a practical antenna is designed that uses a microstrip feed line. For an antenna with inner and outer radii of 4.9 and 5.9 mm, the... 

    Scalable, microwave-assisted decoration of commercial cotton fabrics with binary nickel cobalt sulfides towards textile-based energy storage

    , Article Electrochimica Acta ; Volume 404 , 2022 ; 00134686 (ISSN) Hekmat, F ; Balim, U ; Unalan, H. E ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    High-performance textile-based energy storage systems with high energy and power densities alongside remarkable cyclic life are always at the leading edge of wearable electronics. Herein, commercial cotton fabrics (CCFs) are used as the substrates for the fabrication of ultra-light, high-performance wearable supercapacitors. Hierarchical microstructures of nickel-cobalt sulfide (Ni-Co-S) decorated single-walled carbon nanotubes (SWCNTs) are used as the positive supercapacitor electrodes. Enhanced electrochemical performance with a specific gravimetric capacity of 331 Cg−1 (at a current density of 0.3 Ag−1) is obtained from these Ni-Co-S@SWCNT@CCF electrodes. Besides, composites of graphene... 

    A dual-band circularly polarized antenna using a metallized ferrite disk

    , Article Journal of Magnetism and Magnetic Materials ; Volume 539 , 2021 ; 03048853 (ISSN) Bagheri, A ; Tavakol, M. R ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    We have designed and fabricated a dual-band circularly polarized antenna using a normally magnetized ferrite disk. The disk is metallized on top and is mounted on a grounded dielectric substrate. A hole is then punched at the center of the top metallization. The dual band operation of the antenna is due to two separate unidirectional resonances. The field intensity at the lower resonance is largest close to the outer periphery of the disk whereas at the higher resonance the electromagnetic field is concentrates near the punched hole. A two-section feeding network is used to feed the antenna. Central frequencies of the upper and lower bands are 4.62 GHz and 5.97 GHz, respectively.... 

    Implementation of a unidirectional-mode ferrite disk antenna using permanent magnets and a two-stage matching network

    , Article Journal of Magnetism and Magnetic Materials ; Volume 521 , 2021 ; 03048853 (ISSN) Bagheri, A. M ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    We experimentally demonstrate a circularly polarized antenna that utilizes unidirectional surface waves that propagate on the boundary of a small ferrite disk. The ferrite disk is metalized on top and is mounted on a grounded dielectric substrate. The disk is normally biased by a magnetic field that is provided by two permanent magnets below and above the structure. A two-section feeding network is used to feed the antenna. The operation frequency of the antenna can be adjusted by changing the magnitude of the applied magnetic bias. The sense of polarization can be reversed by reversing the direction of the applied bias. © 2020 Elsevier B.V  

    Multicomponent nanoparticles as means to improve anaerobic digestion performance

    , Article Chemosphere ; Volume 283 , 2021 ; 00456535 (ISSN) Baniamerian, H ; Ghofrani Isfahani, P ; Tsapekos, P ; Alvarado Morales, M ; Shahrokhi, M ; Angelidaki, I ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Sufficient quantity of trace metals is essential for a well performing anaerobic digestion (AD) process. Among the essential trace elements in active sites of multiple important enzymes for AD are iron and nickel ions. In the present study, iron and nickel in the form of Fe2O3 and NiO were coated on TiO2 nanoparticles to be used in batch and continuous operation mode. The effect of TiO2, Fe2O3–TiO2, and NiO–TiO2 nanoparticles on each step of AD process was assessed utilizing simple substrates (i.e. cellulose, glucose, acetic acid, and mixture of H2–CO2) as well as complex ones (i.e. municipal biopulp). The hydrolysis rate of cellulose substrate increased with higher dosages of the coated... 

    ZrN fractal-graphene-based metamaterial absorber in the visible and near-IR regimes

    , Article Optik ; Volume 237 , 2021 ; 00304026 (ISSN) Baqir, M. A ; Choudhury, P. K ; Niaz Akhtar, M ; Sharif University of Technology
    Elsevier GmbH  2021
    Abstract
    The absorption characteristics of zirconium nitride (ZrN)-based metamaterial absorber of fractal geometry are studied. The proposed absorber is comprised of fractal metasurface at the top having subwavelength-sized periodic pattern of specially designed ZrN circular nano-discs arranged over silicon dioxide (SiO2) substrate. A tri-layer graphene, owing to its exhibiting better tunability, is introduced at the interface of metasurface and substrate. The bottom side of SiO2 is coated with silver nanolayer to block transmission. The absorptivity essentially depends on the kind of fractal design used in metasurface to configure the absorber. The obtained results exhibit the absorption... 

    Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3

    , Article Microscopy Research and Technique ; 2021 ; 1059910X (ISSN) Ramazanov, S ; Sobola, D ; Ţălu, Ş ; Orudzev, F ; Arman, A ; Kaspar, P ; Dallaev, R ; Ramazanov, G ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Thin films of bismuth and iron oxides were obtained by atomic layer deposition (ALD) on the surface of a flexible substrate poly(4,4′-oxydiphenylene-pyromellitimide) (Kapton) at a temperature of 250°C. The layer thickness was 50 nm. The samples were examined by secondary-ion mass spectrometry, and uniform distribution of elements in the film layer was observed. Surface morphology, electrical polarization, and mechanical properties were investigated by atomic force microscope, piezoelectric force microscopy, and force modulation microscopy. The values of current in the near-surface layer varied in the range of ±80 pA when a potential of 5 V was applied. Chemical analysis was performed by...