Loading...
Search for: stress-concentration
0.01 seconds
Total 106 records

    Evaluation of sample scale effect on geomechanical tests

    , Article Petroleum Research ; Volume 7, Issue 4 , 2022 , Pages 527-535 ; 20962495 (ISSN) Kashfi, M ; Shad, S ; Zivar, D ; Sharif University of Technology
    KeAi Publishing Communications Ltd  2022
    Abstract
    The size of the rock specimen affects the stress concentrates in the vicinity of the top/bottom of the rock specimen during the evaluation of the geomechanical parameters in the laboratory, which causes unreliable results. However, the appropriate size for geomechanical evaluation is not well understood yet because of limitations in the sampling and analysis. In this study, a series of numerical simulations using a finite element package was conducted to investigate the effect of sample aspect ratio, fluid saturation, and porosity, on the mechanical behavior of the rock under elastic and poroelastic conditions. In addition, two concepts, stress/strain homogeneity index (SHI) and... 

    Geometry influence on fracture behavior of lap-shear solder joints

    , Article IEEE Transactions on Components, Packaging and Manufacturing Technology ; Volume 12, Issue 1 , 2022 , Pages 80-88 ; 21563950 (ISSN) Karimi, M ; Nourani, A ; Honarvar, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Single lap-shear (SLS) specimens of 63Sn37Pb solder joints were prepared with three different adherend thicknesses at three varying joint lengths. The fracture force was measured at a shear strain rate of 0.01 s-1 for different geometries. The elastic-plastic fracture mechanics (EPFM) theory was used to find the energy dissipated in each case using a finite element model (FEM), and the fracture energy was obtained by cohesive zone modeling (CZM). Both 2-D and 3-D models were used to explain the variations in fracture energy by the level of constraint on the joint. Also, the plastic zone area and stress distribution along the solder layer were calculated at the moment of fracture. A phase... 

    Interlaminar stress analysis of composite shell structures using a geometrically nonlinear layer-wise shell finite element

    , Article Composite Structures ; Volume 257 , 2021 ; 02638223 (ISSN) Soltani, Z ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This work aims to calculate interlaminar stress distribution through the thickness of multilayered composite shell structures by employing a novel nonlinear layer-wise shell finite element formulation. Adapting the Mindlin– Reissner theory in each layer, the shear-deformable layer-wise shell element presents the interlaminar shear stress distributions by increasing the number of layers. The interlaminar normal stress distribution is then determined using the finite difference solution of the general form of equilibrium equation in the non-orthogonal curvilinear grid along the Gaussian points. Two boundary conditions at the bottom and the top surfaces are satisfied by adopting the linear... 

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties... 

    Finite element optimization of sample geometry for measuring the torsional shear strength of glass/metal joints

    , Article Ceramics International ; Volume 46, Issue 4 , 2020 , Pages 4857-4863 Fakouri Hasanabadi, M ; Malzbender, J ; Groß Barsnick, S. M ; Abdoli, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Assessment of mechanical properties of glass/metal joints is a challenging process, especially when the application relevant conditions of the joints have to be considered in the test design. In this study, a finite element method (FEM) is implemented to analyze a torsional shear strength test designed for glass-ceramic/steel joints aiming towards solid oxide fuel/electrolysis cells application. Deviations from axial symmetry of the square flanges (ends) of respective hourglass-shaped specimens and also supporting and loading sockets of the test set-up are included in the model to simulate conditions close to reality. Undesirable tensile stress and also shear stress concentration appear at... 

    Effects of vertical and pinch rolling on residual stress distributions in wire and arc additively manufactured components

    , Article Journal of Materials Engineering and Performance ; Volume 29, Issue 4 , 2020 , Pages 2073-2084 Tangestani, R ; Farrahi, G. H ; Shishegar, M ; Pourbagher Aghchehkandi, B ; Ganguly, S ; Mehmanparast, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Residual stresses are inherent in parts manufactured using the wire + arc additive manufacturing (WAAM) technique, resulting in unpredictable mechanical response and structural integrity (Colegrove et al.: J Mater Process Technol 213:1782-1791, 2013). An effective post-processing technique, which enhances the mechanical properties of WAAM parts, is rolling. This study investigates the vertical and pinch rolling effects on residual stress distribution in WAAM components. Initially, a WAAM model was created using a thermo-mechanical finite element modelling approach and validated against the experimental results. Subsequent to the validation of the model, the effect of the main parameters... 

    Dielectrophoretic interaction of two particles in a uniform electric field

    , Article Microsystem Technologies ; Volume 25, Issue 7 , 2019 , Pages 2699-2711 ; 09467076 (ISSN) Javidi, R ; Moghimi Zand, M ; Dastani, K ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The local electric field distorsion induced by a dielectric particle leads to particle–particle interactions and assembly which is very interesting for their useful applications on microfluidic devices. Particles behavior becomes more complicated if several particles interact at the same time. This paper presents a comprehensive numerical analysis of the assembly and particle–particle interactions for two similar and dissimilar dielectric particles immersed in a dielectric fluid using the immersed interface method based on two-dimensional direct-current dielectrophoresis. The immersed interface method is a finite-difference (or finite element) based numerical method which its key advantage... 

    Effect of residual stress on failure of tube-to-tubesheet weld in heat exchangers

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 32, Issue 1 , 2019 , Pages 112-120 ; 17281431 (ISSN) Farrahi, G. H ; Minaii, K ; Chamani, M ; Mahmoudi, A. H ; Sharif University of Technology
    Materials and Energy Research Center  2019
    Abstract
    In a shell and tube heat exchanger, the failure of tube-to-tubesheet welds results in high-pressure water jet which erodes the refractory in front of the tubesheet. Finite element method was employed to simulate the welding process and post weld heat treatment (PWHT) to find the factors affecting the failure in tube-to-tubesheet weldments. Residual stresses in two different geometries of tube-to-tubesheet weldment were calculated through uncoupled thermal-structural analysis. The results showed that the values of residual stresses are higher in heat exchanger of site 1 than site 2 due to more weld passes and geometry of connection. Also, the maximum stress in site 1 occurs at the shellside... 

    Effect of residual stress on failure of tube-to-tubesheet weld in heat exchangers

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 32, Issue 1 , 2019 , Pages 112-120 ; 17281431 (ISSN) Farrahi, G. H ; Minaii, K ; Chamani, M ; Mahmoudi, A. H ; Sharif University of Technology
    Materials and Energy Research Center  2019
    Abstract
    In a shell and tube heat exchanger, the failure of tube-to-tubesheet welds results in high-pressure water jet which erodes the refractory in front of the tubesheet. Finite element method was employed to simulate the welding process and post weld heat treatment (PWHT) to find the factors affecting the failure in tube-to-tubesheet weldments. Residual stresses in two different geometries of tube-to-tubesheet weldment were calculated through uncoupled thermal-structural analysis. The results showed that the values of residual stresses are higher in heat exchanger of site 1 than site 2 due to more weld passes and geometry of connection. Also, the maximum stress in site 1 occurs at the shellside... 

    Scattering of SH-waves by an elliptic cavity/crack beneath the interface between functionally graded and homogeneous half-spaces via multipole expansion method

    , Article Journal of Sound and Vibration ; Volume 435 , 2018 , Pages 372-389 ; 0022460X (ISSN) Ghafarollahi, A ; Shodja, H. M ; Sharif University of Technology
    Academic Press  2018
    Abstract
    In this study, based on multipole expansion method an analytical treatment is presented for the anti-plane scattering of SH-waves by an arbitrarily oriented elliptic cavity/crack which is embedded near the interface between exponentially graded and homogeneous half-spaces. The cavity is embedded within the inhomogeneous half-space. The boundary value problem of interest is solved by constructing an appropriate set of multipole functions which satisfy (i) the governing equation in each half-space, (ii) the continuity conditions across the interface between the two half-spaces, and (iii) the far-field radiation and regularity conditions. The analytical expressions for the scattered... 

    An analytical study on the elastic-plastic pure bending of a linear kinematic hardening curved beam

    , Article International Journal of Mechanical Sciences ; Volume 144 , 2018 , Pages 274-282 ; 00207403 (ISSN) Fazlali, M. R ; Arghavani, J ; Eskandari, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, an analytical solution is presented for elastic-plastic pure bending of a linear kinematic hardening curved beam with rectangular cross section both in monotonic loading and unloading. Compared to exact plane plasticity solution (already reported in the literature in loading) which needs solution of a system of equations, the proposed method is based on the hyperbolic strain distribution on the cross section which yields a simple approximate solution. To this end, we employ Winkler's theory, and assume plane cross sections remain plane after loading proved by the exact elasticity and plasticity solutions for pure bending of curved beams with rectangular cross section. At the... 

    Numerical and experimental investigation on influence of initial microstructure on GTA-welded age-hardened AA2024

    , Article International Journal of Advanced Manufacturing Technology ; Volume 97, Issue 1-4 , 2018 , Pages 1335-1346 ; 02683768 (ISSN) Sarmast, A ; Serajzadeh, S ; Jamshidi Aval, H ; Sharif University of Technology
    Springer London  2018
    Abstract
    Influence of gas tungsten arc welding on the thermal responses, residual stress distribution and final mechanical properties of the naturally age-hardened (T4) and artificially age-hardened (T6) AA2024 plates was studied. The results showed that age hardening and over-aging occurred in various sections of the heat-affected zone (HAZ) of T4 sample, depending on their locations, while in the HAZ of T6 sample, over-aging is the governing phenomenon. Also, subsequent natural aging occurred in HAZ, weld metal (WM) and partially melted material (PMM) of both weldments. This recent phenomenon is more obvious in the T4 sample in comparison with the T6 one. In both microstructures, weld metal is the... 

    Scattering of plane elastic waves by a multi-coated nanofiber with deformable interfaces

    , Article International Journal of Solids and Structures ; Volume 141-142 , 2018 , Pages 195-218 ; 00207683 (ISSN) Shodja, H. M ; Taheri Jam, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The scattering of in-plane P- and SV-waves by a multi-coated circular nanofiber with deformable interfaces is of interest. To this end, in the present work, after introducing two kinds of interface momenta defined as the derivative of the interface excess kinetic energy with respect to the average and relative velocities at the interface, we extend the elastostatic theory of Gurtin et al. (1998) on deformable interfaces to the elastodynamic theory and derive the interface equations of motion using Hamilton principle. The effects of the generalized interface properties including the interface inertial parameters and interface stiffness towards stretch and slip on the dynamic stress... 

    Effect of initial surface treatment on shot peening residual stress field: analytical approach with experimental verification

    , Article International Journal of Mechanical Sciences ; Volume 137 , 2018 , Pages 171-181 ; 00207403 (ISSN) Sherafatnia, K ; Farrahi, G. H ; Mahmoudi, A. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Shot peening is the most common surface treatment employed to enhance the fatigue performance of structural metallic materials and often carried out after other surface treatments. This paper mainly focuses on the effects of initial conditions of surface such as initial stress filed and hardness profile on shot peening residual stress field. The residual stress distribution induced by shot peening is obtained using Hertzian contact theory and elastic–plastic evaluation after yielding occurred during impingement and rebound of shots. Elastic plastic calculations are performed using different hardening models considering Bauschinger effect. The present model is able to predict redistribution... 

    Relief of edge effects in bi-adhesive composite joints

    , Article Composites Part B: Engineering ; Volume 108 , 2017 , Pages 153-163 ; 13598368 (ISSN) Yousefsani, S. A ; Tahani, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Three-dimensional thermo-mechanical stress analysis of composite joints with bi-adhesive bonding is presented using the full layerwise theory. Based on three-dimensional elasticity theory, sets of fully coupled governing differential equations are derived using the principle of minimum total potential energy and are simultaneously solved using the state space approach. Results show that bi-adhesive bonding substantially relieves the edge effects. Moreover, series of parametric studies reveal the nonlinear effects of bonding length ratio and the relative stiffness and coefficient of thermal expansion of the mid- and side-adhesives. It is also concluded that the optimum design of a bi-adhesive... 

    Stress analysis of multilayer thin walled pipes with circular cut-outs

    , Article World Congress on Engineering 2016, WCE 2016, 29 June 2016 through 1 July 2016 ; Volume 2224 , 2016 , Pages 1146-1150 ; 20780958 (ISSN); 9789881404800 (ISBN) Kamalarajah, R ; Bull, J.W ; Chizari, M ; Ao S.I ; Ao S.I ; Gelman L ; Ao S.I ; Gelman L ; Hukins D.W.L ; Hunter A ; Korsunsky A.M ; et al.; IAENG Society of Artificial Intelligence; IAENG Society of Bioinformatics; IAENG Society of Computer Science; IAENG Society of Data Mining; IAENG Society of Electrical Engineering ; Sharif University of Technology
    Newswood Limited  2016
    Abstract
    A finite element analysis of a double layered shell with a circular hole is carried out with the computer aided engineering software Abaqus (Dassault Systèmes, FR). The model proposed has been used to perform a stress analysis on three pipes with different sized hole. Moreover, thermal expansion has been implemented in the testing. For the purpose of the research, the elastic properties of the materials have been considered and the results compared with the ones previously published in literature. The outcome of the investigation will benefit towards the design of optimal and sustainable pipes with circular cut outs  

    Experimental measurement and analytical determination of shot peening residual stresses considering friction and real unloading behavior

    , Article Materials Science and Engineering A ; Volume 657 , 2016 , Pages 309-321 ; 09215093 (ISSN) Sherafatnia, K ; Farrahi, G. H ; Mahmoudi, A. H ; Ghasemi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This paper presents an analytical model to predict the residual stress distribution induced by Shot peening. The analytical approach is based on the work of Shen and Atluri (2006) [18] with some modifications. The modifications are related to the elasto-plastic unloading of shot impingements, friction coefficient effect and the fraction of kinetic energy transmitted to the treated material. In order to predict more realistic residual stresses, the elasto-plastic unloading phase of shot impacts is modeled using two nonlinear kinematic hardening models considering the Bauschinger effect. Moreover, the effect of the Coulomb friction between target surface and shots is evaluated. For this... 

    On thermomechanical stress analysis of adhesively bonded composite joints in presence of an interfacial void

    , Article Composite Structures ; Volume 130 , October , 2015 , Pages 116-123 ; 02638223 (ISSN) Tahani, M ; Yousefsani, S. A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This paper deals with analytical thermomechanical stress analysis of adhesively bonded composite joints in presence of a structural imperfection in the form of an interfacial void within the adhesive layer based on the full layerwise theory (FLWT). The joints are subjected to mechanical tension, uniform temperature change, or steady-state heat conduction. The proposed adhesive joint is divided into three distinct regions along its length and a large number of mathematical plies through its thickness. Three sets of fully coupled governing equilibrium equations are derived employing the principle of minimum total potential energy. The three-dimensional nonlinear interlaminar stress... 

    Scattering of an anti-plane shear wave by an embedded cylindrical micro-/nano-fiber within couple stress theory with micro inertia

    , Article International Journal of Solids and Structures ; Volume 58 , April , 2015 , Pages 73-90 ; 00207683 (ISSN) Shodja, H. M ; Goodarzi, A ; Delfani, M. R ; Haftbaradaran, H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The inadequacy of traditional theory of elasticity in describing such a phenomenon as dispersion associated to a propagating wave with wavelength comparable to the intrinsic length of the medium of interest is well-known. Moreover, under certain circumstances it is incapable of capturing all the propagating waves. A remedy to such dilemmas is the employment of the more accurate higher order continuum theories which give rise to the appearance of at least one new characteristic length in the formulation. The experimental evidences as well as lattice dynamic analysis suggest that, although higher order continuum theories result in some improvements, but cannot fully overcome the... 

    Constitutive law of finite deformation elastoplasticity with proportional loadings

    , Article Journal of Pressure Vessel Technology, Transactions of the ASME ; Volume 135, Issue 6 , September , 2013 ; 00949930 (ISSN) Darijani, H ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, decomposition of the total strain into elastic and plastic parts is investigated for extension of elastic-type constitutive models to finite deformation elastoplasticity. In order to model the elastic behavior, a Hookean-type constitutive equation based on the logarithmic strain is considered. Based on this constitutive equation and assuming the deformation theory of Hencky as well as the yield criteria of von Mises, the elastic-plastic behavior of materials at finite deformation is modeled in the case of the proportional loading. Moreover, this elastoplastic model is applied in order to determine the stress distribution in thick-walled cylindrical pressure vessels at finite...