Loading...
Search for: sol-gels
0.018 seconds
Total 265 records

    Water-based sol-gel nanocrystalline barium titanate: Controlling the crystal structure and phase transformation by Ba:Ti atomic ratio

    , Article Journal of Materials Science ; Volume 44, Issue 18 , 2009 , Pages 4959-4968 ; 00222461 (ISSN) Mohammadi, M. R ; Esmaeili Rad, A ; Fray, D. J ; Sharif University of Technology
    2009
    Abstract
    Highly stable, water-based barium titanate (BaTiO3) sols were developed by a low cost and straightforward sol-gel process. Nanocrystalline barium titanate thin films and powders with various Ba:Ti atomic ratios were produced from the aqueous sols. The prepared sols had a narrow particle size distribution in the range 21-23 nm and they were stable over 5 months. X-ray diffraction pattern revealed that powders contained mixture of hexagonal- or perovskite-BaTiO3 as well as a trace of Ba2Ti 13O22 and Ba4Ti2O27 phases, depending on annealing temperature and Ba:Ti atomic ratio. Highly pure barium titanate with cubic perovskite structure achieved with Ba:Ti = 50:50 atomic ratio at the high... 

    Visible light photo-induced antibacterial activity of CNT-doped TiO 2 thin films with various CNT contents

    , Article Journal of Materials Chemistry ; Volume 20, Issue 35 , Jun , 2010 , Pages 7386-7392 ; 09599428 (ISSN) Akhavan, O ; Azimirad, R ; Safa, S ; Larijani, M. M ; Sharif University of Technology
    2010
    Abstract
    Carbon nanotube (CNT)-doped TiO2 thin films with various CNT contents were synthesized by sol-gel method for visible light photoinactivation of Escherichia coli bacteria. Post annealing of the CNT-doped TiO2 thin films at 450 °C resulted in anatase TiO2 and formation of Ti-C and Ti-O-C carbonaceous bonds in the film. By increasing the CNT content, the thin films could further inactivate the bacteria in the dark. Meanwhile, as the CNT content increased from zero to 40 wt% the effective optical band gap energy of the CNT-doped TiO2 thin films annealed at 450 °C decreased from 3.2-3.3 to less than ∼2.8 eV providing light absorption in the visible region. Concerning this, visible light... 

    Visible light-induced photocatalytic reduction of graphene oxide by tungsten oxide thin films

    , Article Applied Surface Science ; Volume 276 , 2013 , Pages 628-634 ; 01694332 (ISSN) Choobtashani, M ; Akhavan, O ; Sharif University of Technology
    2013
    Abstract
    Tungsten oxide thin films (deposited by thermal evaporation or sol gel method) were used for photocatalytic reduction of graphene oxide (GO) platelets (synthesized through a chemical exfoliation method) on surface of the films under UV or visible light of the environment, in the absence of any aqueous ambient at room temperature. Atomic force microscopy (AFM) technique was employed to characterize surface morphology of the GO sheets and the tungsten oxide films. Moreover, using X-ray photoelectron spectroscopy (XPS), chemical state of the tungsten oxide films and the photocatalytic reduction of the GO platelets were quantitatively investigated. The better performance of the sol-gel tungsten... 

    Visible light active Au:TiO2 nanocomposite photoanodes for water splitting: Sol-gel vs. sputtering

    , Article Electrochimica Acta ; Volume 56, Issue 3 , January , 2011 , Pages 1150-1158 ; 00134686 (ISSN) Naseri, N ; Sangpour, P ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    In this study, pure TiO2 and Au:TiO2 nanocomposite thin films are both synthesized using sol-gel and RF reactive co-sputtering methods. Physical and photoelectrochemical properties of the thin films deposited by each method are compared. The optical density spectra and scanning electron microscopy images of the Au:TiO2 films reveal formation of gold nanoparticles in the all nanocomposite films synthesized by two methods. Moreover, the optical bandgap energy of the thin films decreases with addition of Au nanoparticles. X-ray photoelectron spectroscopy indicates that the presence of gold in metallic state and the formation of TiO2 is stoichiometric. The photoelectrochemical properties of the... 

    Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica solgel immobilized cells

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 152 , 2017 , Pages 159-168 ; 09277765 (ISSN) Bagheri Lotfabad, T ; Ebadipour, N ; Roostaazad, R ; Partovi, M ; Bahmaei, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Rhamnolipids are the most common biosurfactants and P. aeruginosa strains are the most frequently studied microorganisms for the production of rhamnolipids. Eco-friendly advantages and promising applications of rhamnolipids in various industries are the major reasons for pursuing the economic production of these biosurfactants. This study shows that cultivation of P. aeruginosa MR01 in medium contained inexpensive soybean oil refinery wastes which exhibited similar levels and homologues of rhamnolipids. Mass spectrometry indicated that the Rha-C10-C10 and Rha-Rha-C10-C10 constitute the main rhamnolipids in different cultures of MR01 including one of oil carbon source analogues. Moreover,... 

    Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid

    , Article Journal of Hazardous Materials ; Volume 172, Issues 2–3 , December , 2009 , Pages 1573–1578 Ghasemi, S. (Shahnaz) ; Rahimnejad, S. (sara) ; Rahman Setayesh, S. (shahrbanoo) ; Rohani, S ; Gholami, M.R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    TiO2 and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO2 nanoparticles were synthesized by the sol–gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 °C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO2. Dopant ions in the TiO2 structure caused significant absorption shift into the visible region. The results of... 

    Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid

    , Article Journal of Hazardous Materials ; Volume 172, Issue 2-3 , 2009 , Pages 1573-1578 ; 03043894 (ISSN) Ghasemi, S ; Rahimnejad, S ; Setayesh, S. R ; Rohani, S ; Gholami, M. R ; Sharif University of Technology
    Abstract
    TiO2 and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO2 nanoparticles were synthesized by the sol-gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 °C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO2. Dopant ions in the TiO2 structure caused significant absorption shift into the visible region. The results of... 

    Towards greater mechanical, thermal and chemical stability in solid-phase microextraction

    , Article TrAC - Trends in Analytical Chemistry ; Volume 34 , 2012 , Pages 126-138 ; 01659936 (ISSN) Bagheri, H ; Piri-Moghadam, H ; Naderi, M ; Sharif University of Technology
    Abstract
    Solid-phase microextraction (SPME) is a fast, solvent-free technique, which, since its introduction in the 1990s, has been increasingly applied to sample preparation in analytical chemistry. Conventional SPME fibers are fabricated by making a physical bond between the usual silica substrate and the polymeric coatings. However, some applications are limited, as the lifetime and the stability of conventional SPME fibers cannot meet the demands of analyzing relatively non-volatile compounds with more polar moieties. There have been attempts to analyze less volatile compounds by increasing the thermal, physical and chemical stability of the fibers. In this review, we present some new... 

    Titanium disulfide decorated hollow carbon spheres towards capacitive deionization

    , Article Desalination ; Volume 533 , 2022 ; 00119164 (ISSN) Ezzati, M ; Hekmat, F ; Shahrokhian, S ; Unalan, H. E ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Freshwater scarcity in conjunction with population expansion puts human survival in doubt. Throughout the world, millions of people are deprived of clean and safe drinking water. The development of novel technologies to desalinate water is among the most valuable studies for humanity. Receiving benefits from low energy consumption, high environmental capability, and low-production cost, capacitive deionization (CDI) received significant attention in saline water desalination. Rational design of efficient electrode materials by tailoring their structural and compositional properties, therefore, plays a pivotal role in achieving high-performance CDI systems. Hollow carbon spheres (HCSs) with... 

    Titania nanotubes decorated with Zn-doped titania nanoparticles as the photoanode electrode of dye-sensitized solar cells

    , Article Energy Technology ; Volume 5, Issue 9 , 2017 , Pages 1571-1578 ; 21944288 (ISSN) Mokarami Ghartavol, H ; Afshar, A ; Mohammadi, M. R ; Chau Nan Hong, F ; Jeng, Y. R ; Sharif University of Technology
    Abstract
    We decorated Zn-doped TiO2-nanoparticle-based photoanodes with carbon nanotube (CNT)-derived TiO2 nanotubes (TNs) to enhance the power conversion efficiency of dye-sensitized solar cells (DSCs). X-ray photoelectron spectroscopy analysis verified that Zn ions, in the range of 0 to 1 at %, were successfully doped into the TiO2 lattice. Field-emission SEM and TEM images of the TNs, as derived from the sol–gel template-assisted route, revealed that a uniform TiO2 coating with a thickness of 60 to 120 nm was deposited on the surface of the CNT template through a noncovalent route. We observed that the cell efficiency improved from 6.80 for pure TiO2 to 7.52 for 0.75 at % Zn-doped TiO2... 

    TiO2–BaTiO3 nanocomposite for electron capture in dye-sensitized solar cells

    , Article Journal of the American Ceramic Society ; Volume 100, Issue 5 , 2017 , Pages 2144-2153 ; 00027820 (ISSN) Asgari Moghaddam, H ; Mohammadi, M. R ; Sharif University of Technology
    Blackwell Publishing Inc  2017
    Abstract
    Different compositions of TiO2–BaTiO3 nanocomposites are synthesized with various weight ratios for dye-sensitized solar cell (DSSC) applications. TiO2 and BaTiO3 nanoparticles (NPs) are synthesized by sol-gel and solvothermal methods, respectively and are employed as the photoanode electrodes. BaTiO3 NPs have pure cubic perovskite crystal structure with an average size of 20-40 nm, while TiO2 NPs show pure anatase phase with 15-30 nm size. The power conversion efficiency (PCE) enhancement of the cells is first attained by controlling the thickness of the films for light harvesting improvement. The fabricated DSSC composed of pure BaTiO3 NPs with an optimal thickness of 25 μm shows... 

    Thickness dependent activity of nanostructured TiO2/α- Fe2O3 photocatalyst thin films

    , Article Applied Surface Science ; Volume 257, Issue 5 , 2010 , Pages 1724-1728 ; 01694332 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    The effect of thickness of TiO2 coating on synergistic photocatalytic activity of TiO2 (anatase)/α-Fe 2O3/glass thin films as photocatalysts for degradation of Escherichia coli bacteria in a low-concentration H2O2 solution and under visible light irradiation was investigated. Nanograined α-Fe2O3 films with optical band-gap of 2.06 eV were fabricated by post-annealing of thermal evaporated iron oxide thin films at 400 °C in air. Increase in thickness of the Fe2O3 thin film (here, up to 200 nm) resulted in a slight reduction of the optical band-gap energy and an increase in the photoinactivation of the bacteria. Sol-gel TiO2 coatings were deposited on the α-Fe2O 3 (200 nm)/glass films, and... 

    The selective aerobic oxidation of methylaromatics to benzaldehydes using a unique combination of two heterogeneous catalysts

    , Article Organic and Biomolecular Chemistry ; Volume 3, Issue 5 , 2005 , Pages 725-726 ; 14770520 (ISSN) Rajabi, F ; Clark, J. H ; Karimi, B ; Macquarrie, D. J ; Sharif University of Technology
    2005
    Abstract
    A unique combination of a supported cobalt complex and the first example of supported NHPI in acetic acid gives a surprisingly stable heterogeneous catalytic system for the selective aerobic oxidation of methylaromatics to benzaldehydes at atmospheric pressure. © The Royal Society of Chemistry 2005  

    Thermomechanical synthesis of hybrid in-situ Al-(Al3Ti+Al2O3) composites through nanoscale Al-Al2TiO5 reactive system

    , Article Journal of Alloys and Compounds ; Volume 789 , 2019 , Pages 493-505 ; 09258388 (ISSN) Ahmadvand, M. S ; Azarniya, A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this work, nanostructured aluminum titanate (Al2TiO5 or AT) was synthesized by the citrate sol gel method. Then, different volume fractions of this ceramic were blended with Al powder through different durations of the high-energy vibratory milling. The effect of mechanical milling on the thermal degradation of AT in exposure to Al and formation mechanism of in-situ Al2O3 and Al3Ti particles were explored in three conditions: (i) in the powder form; (ii) after annealing of green compact; and (iii) after hot extrusion. In the powder form, it was shown that the mechanical milling is able to significantly diminish the thermal stability of AT, so that the required temperature for the Al3Ti... 

    Thermal stability and strain sensitivity of nanostructured aluminum titanate (Al2TiO5)

    , Article Materials Chemistry and Physics ; Volume 223 , 2019 , Pages 202-208 ; 02540584 (ISSN) Keyvani, N ; Azarniya, A ; Madaah Hosseini, H. R ; Abedi, M ; Moskovskikh, D ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In the present work, nanostructured aluminum titanate (Al2TiO5 or AT) was synthesized by the sol-gel method and potential effects of mechanical strain on its phase analysis, morphology, and thermal stability were investigated in some details for the first time, because the thermal instability of AT is beneficial to the fabrication of in-situ aluminum matrix composites. To characterize the particle distribution, microstructure and thermal durability of AT after the strain induction, field-emission scanning electron microscope (FE-SEM), differential scanning calorimetry (DSC), and x-ray diffraction analysis (XRD) were utilized. The experimental results showed that a 3-h ball milling process... 

    Thermal decomposition of nanostructured Aluminum Titanate in an active Al matrix: A novel approach to fabrication of in situ Al/Al2O3-Al3Ti composites

    , Article Materials and Design ; Volume 88 , 2015 , Pages 932-941 ; 02641275 (ISSN) Azarniya, A ; Hosseini, H. R. M ; Jafari, M ; Bagheri, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The thermal decomposition of Aluminum Titanate in exposure to pure Aluminum was examined both in powder and in bulk form. Optical microscopy, FE-SEM, XRD, DSC and TGA examinations were conducted to take the possible chemical reactions between Aluminum Titanate and Al into consideration. It was found that as Aluminum Titanate particles are exposed to Al matrix, the thermal stability of Aluminum Titanate is degraded and its decomposition temperature is reduced from 850°C to 550°C. Also, the chemical reactions between Aluminum Titanate and Al start along the interfaces, and the reaction products, i.e. Al3Ti, Al2O3, TiO2 and O2 gas are left there. A mechanism was suggested to describe the... 

    The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions

    , Article Ceramics International ; Volume 39, Issue 7 , 2013 , Pages 7343-7353 ; 02728842 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Dye-sensitized solar cells (DSCCs) in the form of mixed nanostructures containing TiO2 nanoparticles and nanowires with different weight ratios and phase compositions are reported. X-ray diffraction and field emission scanning electron microscopy analyses revealed that the synthesized TiO 2 nanoparticles had average crystallite size in the range 21-39 nm, whereas TiO2 nanowires showed diameter in the range 20-50 nm. The indirect optical band gap energy of TiO2 nanowires, anatase- and rutile-TiO2 nanoparticles was calculated to be 3.35, 3.28 and 3.17 eV, respectively. The power conversion efficiency of the solar cells changed with nanowire to nanoparticle weight ratio, reaching a maximum at a... 

    The effect of sol-gel surface modified silver nanoparticles on the protective properties of the epoxy coating

    , Article RSC Advances ; Volume 6, Issue 23 , 2016 , Pages 18996-19006 ; 20462069 (ISSN) Ghazizadeh, A ; Haddadi, S. A ; Mahdavian, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    In this study, the effect of surface modified silver nanoparticles on the corrosion protection of an epoxy coating on mild steel was studied. An organosilane (3-methoxy silyl propyl metacrylate) was used as a surface modifier to increase the dispersability of the inorganic nanoparticles in the organic epoxy coating matrix. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to characterize the surface modified nanoparticles. Differential scanning colorimetry (DSC) was employed to study the effects of modified and unmodified nano-silver on the curing heat and glass transition temperature of the epoxy coatings. Salt spray and electrochemical impedance... 

    The effect of nanocrystalline tungsten oxide concentration on surface properties of dip-coated hydrophilic WO3-SiO2 thin films

    , Article Journal of Physics D: Applied Physics ; Volume 40, Issue 7 , 2007 , Pages 2089-2095 ; 00223727 (ISSN) Naseri, N ; Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2007
    Abstract
    WO3-SiO2 compound thin films were deposited on glass substrates using the sol-gel method, and then all the samples were dried at 100 °C and annealed at 400 °C in air. The effect of WO3 concentration on the hydrophilicity of WO3-SiO2 compound films was studied for the first time and it was shown that the films containing 85 mol% of the concentration possessed a superhydrophilic surface without UV or visible irradiation. Optical properties of the films such as transmittance, reflectance and bandgap energy were investigated using a UV-visible spectrophotometer. According to atomic force microscopy, the surface ratio was maximized in 85 mol% concentration of WO3 similar to hydrophilicity.... 

    The effect of multiwalled carbon nanotubes and activated carbon on the morphology and photocatalytic activity of TiO2/C hybrid materials

    , Article Catalysis Science and Technology ; Volume 1, Issue 2 , 2011 , Pages 279-284 ; 20444753 (ISSN) Zarezade, M ; Ghasemi, S ; Gholami, M. R ; Sharif University of Technology
    2011
    Abstract
    TiO2 nanoparticles supported on activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) were prepared by the sol-gel method using ultrasonic irradiation. All the prepared samples were calcined at different temperatures and characterized by X-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, transmission electron microscopy and diffuse reflectance spectroscopy. The effects of size and type of carbon on the morphology and photocatalytic activity of the resulting hybrid materials were investigated. The results showed that a decrease in the size of the carbon led to a decrease in size of TiO2 nanoparticles. Both AC and MWCNTs retarded the...