Loading...
Search for: silicate-minerals
0.008 seconds
Total 43 records

    The study of prepration of blue V zircon pigment by using zircon and sulphuric acid

    , Article Innovative Processing and Manufacturing of Advanced Ceramics and Composites - 8th Pacific Rim Conference on Ceramic and Glass Technology, PACRIM 8, Vancouver, BC, 31 May 2009 through 5 June 2009 ; Volume 212 , JUL , 2010 , Pages 197-206 ; 10421122 (ISSN); 9780470876466 (ISBN) Riahi, M ; Faghihi Sani, M. A ; Sharif University of Technology
    2010
    Abstract
    Depending on the type of dopant metal, many kinds of zircon based pigments are produced and blue vanadium pigment is the most important one of them. In this study, blue zircon ceramic pigments were synthesized from intermediate product, resulting from decomposition of zircon sand with NaOH. In this regard, various amounts of sulfuric acid, water, NH4VO3 as colorant, NaF as mineralizer and extra quartz were added to the prepared Na 2ZrSiO5. Role of quartz was to omit the repercussions of presence of free zirconia in the composition. The main objective of this work is to assess various reactions at different temperatures during blue pigment synthesis. Phase analysis was done by X ray... 

    The effects of SiO 2 and K 2O on glass forming ability and structure of CaOTiO 2P 2O 5 glass system

    , Article Ceramics International ; Volume 38, Issue 4 , 2012 , Pages 3281-3290 ; 02728842 (ISSN) Ahmadi Mooghari, H. R ; Nemati, A ; Eftekhari Yekta, B ; Hamnabard, Z ; Sharif University of Technology
    2012
    Abstract
    The effects of SiO 2 and K 2O were investigated on the glass forming ability (GFA) and structural characteristics of CaOTiO 2P 2O 5 system. Differential thermal analyzer (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR and 31P magic angle spinning NMR methods were applied for characterizations of the system. Unwanted crystallization in the initial three components base glass composition was observed by adding SiO 2 and crystalline phases such as TiP 2O 7, rutile (TiO 2) and cristobalite (SiO 2) were formed in it. The results showed that K 2O prevents crystallization of glasses and promotes the formation of glass. FT-IR and X-ray diffraction showed that the addition... 

    Synthesis of polypropylene/clay nanocomposites using bisupported Ziegler-Natta catalyst

    , Article Journal of Applied Polymer Science ; Volume 115, Issue 1 , 2010 , Pages 308-314 ; 00218995 (ISSN) Ramazani, S. A. A ; Tavakolzadeh, F ; Baniasadi, H ; Sharif University of Technology
    Abstract
    In this article, preparation of polypropylene/clay nanocomposites (PPCNC) via in situ polymerization is investigated. MgCl2/montmorillonite bisupported Ziegler-Natta catalyst was used to prepare PPCNC samples. Montmorillonite (MMT) was used as an inert support and reinforcement agent. The nanostructure of the composites was characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. Obtained results showed that silica layers of the MMT in these PPCNC were intercalated, partially exfoliated, and uniformly dispersed in the polypropylene matrix. Thermogravimetric analysis showed good thermal stability for the prepared PPCNC. Differential... 

    Synthesis of Na-A and faujasitic zeolites from high silicon fly ash

    , Article Materials Research Bulletin ; Volume 44, Issue 4 , 2009 , Pages 913-917 ; 00255408 (ISSN) Fotovat, F ; Kazemian, H ; Kazemeini, M ; Sharif University of Technology
    2009
    Abstract
    High silicon fly ash (HSFA) utilized as a source of silicon in synthesizing of Na-A, -X and -Y zeolites through alkali fusion followed by hydrothermal treatment at 100 °C for 12 h. Various types of zeolites with different degrees of purity were prepared by changing Si/Al ratio of the reaction mixture from 1.6 to 3.0. In addition, exact boundaries of this ratio for synthesis of each zeolite type were determined. Furthermore, the effect of NaOH amount utilized in alkaline fusion step on crystalinity of samples investigated. The synthesized zeolites were characterized using various techniques including; XRD, TGA, FTIR, SEM and BET. The ion-exchange behaviors of zeolitic samples tested with... 

    Synthesis of dimethyl ether over modified H-mordenite zeolites and bifunctional catalysts composed of Cu/ZnO/ZrO2 and modified H-mordenite zeolite in slurry phase

    , Article Catalysis Letters ; Volume 129, Issue 1-2 , 2009 , Pages 111-118 ; 1011372X (ISSN) Khandan, N ; Kazemeini, M ; Aghaziarati, M ; Sharif University of Technology
    2009
    Abstract
    Synthesis of dimethyl ether (DME) via methanol dehydration were investigated over various catalysts, and via direct CO hydrogenation over hybrid catalysts composed of Al-modified H-Mordenite zeolite and Cu/ZnO/ZrO 2. H-Mordenite zeolite exhibited the highest activity in dehydration of methanol. However, its selectivity toward dimethyl ether was rather low. For this reason, the H-Mordenite was modified. Modification of zeolites was performed by wet impregnation method and considered catalysts were characterized by AAS, XRD and NH3-TPD analyses. Results of catalytic tests indicated that H-Mordenite modified with 8 wt% aluminum oxide was the best catalyst for synthesis of dimethyl ether from... 

    Study of temperature and velocity distribution of rarefied gas flow in micro-nano channels

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART B , 2009 , Pages 1045-1050 ; 9780791843727 (ISBN) Ghezel Sofloo, H ; Shams, A ; Ebrahimi, R ; Sharif University of Technology
    Abstract
    This paper deals with simulation of transport phenomena in micro and nano pores. The number of cavities and the cavity radius were estimated by using Henry's law for adsorption of Argon onto ZSM-5 and NaX zeolites. This work showed both of zeolites have pores with average size less than 1 nm. Then with using micro- nano channel assumption instead of micro-nano pores, gas flow and heat transfer were investigated. Subsonic nonideal gas flow and heat transfer for different Knudsen number are investigated numerically using the Direct Simulation Monte Carlo method modified with a consistent Boltzamnn algorithm. The collision rate is also modified based on the Enskog theory for dense gas. It is... 

    Semi-IPN carrageenan-based nanocomposite hydrogels: Synthesis and swelling behavior

    , Article Journal of Applied Polymer Science ; Volume 118, Issue 5 , 2010 , Pages 2989-2997 ; 00218995 (ISSN) Mahdavinia, G. R ; Marandi, G. B ; Pourjavadi, A ; Kiani, G ; Sharif University of Technology
    2010
    Abstract
    Inclusion of nano-clays into hydrogels is an efficient approach to produce nanocomposite hydrogels. The introduction of nano-clay into hydrogels causes an increase in water absorbency. In the present work, Nanocomposite hydro-gels based on kappa-carrageenan were synthesized using sodium montmorillonite as nano-clay. Acrylamide and meth-ylenebisacrylamide were used as monomer and crosslinker, respectively. The structure of nanocomposite hydrogels was investigated by XRD and SEM techniques. Swelling behavior of nanocomposite hydrogels was studied by varying clay and carrageenan contents as well as methylenebisacrylamide concentration. An optimum swelling capacity was achieved at 12% of sodium... 

    Recycled ceramic waste high strength concrete containing wollastonite particles and micro-silica: A comprehensive experimental study

    , Article Construction and Building Materials ; Volume 201 , 2019 , Pages 11-32 ; 09500618 (ISSN) Zareei, S. A ; Ameri, F ; Shoaei, P ; Bahrami, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study investigated the effects of combined utilization of wollastonite particles and recycled waste ceramic aggregate (RWCA) on high strength concrete (HSC) properties. Two groups of mixtures were manufactured: 1) concrete mixtures in which cement was partially replaced with wollastonite at values ranging from 10% to 50%, and 2) mixtures in which wollastonite was used at the aforementioned dosages and 50% of natural coarse aggregate was replaced with RWCA. In addition, 10% of cement weight micro-silica was added to all mixtures. The concrete behavior in terms of strength, durability, resistance against acidic environment, and performance under elevated temperatures ranging from 20 °C to... 

    Rapid formation of hydroxyapatite nanostrips via microwave irradiation

    , Article Journal of Alloys and Compounds ; Volume 469, Issue 1-2 , 2009 , Pages 391-394 ; 09258388 (ISSN) Arami, H ; Mohajerani, M ; Mazloumi, M ; Khalifehzadeh, R ; Lak, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    2009
    Abstract
    Hydroxyapatite (HAp) nanostrips were rapidly obtained during a mild microwave heating method. Applying microwave irradiation to Ca(NO3)2·4H2O/CTAB/Na2HPO4 precursor solution, the HAp precipitation process was occurred directly and without common crystallographic transformations including dissolution and slow recrystallization. The cationic surfactant CTAB was used as a soft template to modify nucleation and growth process. TEM investigations showed that the fabricated nanostrips had a width and length of about 10 and 55 nm, respectively. The X-ray diffraction pattern revealed that the fabricated well-crystallized and high purity hydroxyapatite nanostrips had a pattern similar to the bone... 

    Preparation of polyethylene/layered silicate nanocomposites using in situ polymerization approach

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , December , 2008 , Pages 65-71 ; 10221360 (ISSN) Ramazani Saadatabadi, A ; Tavakolzadeh, F ; Sharif University of Technology
    2008
    Abstract
    In this paper, preparation of polyethylene/clay nanocomposites (PECNC) by in situ Ziegler-Natta catalyst polymerization was investigated. A Ziegler-Natta catalyst was first supported on montmorillonite (MMT) type clay and subsequently used for polymerizing ethylene. Clay and clay supported catalyst were characterized by Fourier transmission infrared and ICP method. X-ray diffraction (XRD) and transmission electron microscopy results show that silicate layers of the mineral clay in prepared nanocomposites were intercalated and exfoliated in the polymeric matrix. Differential scanning calorimetry results show that the prepared nanocomposites have higher crystallization temperature than pure... 

    Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering

    , Article Ceramics International ; Volume 45, Issue 13 , 2019 , Pages 16288-16296 ; 02728842 (ISSN) Orooji, Y ; Ghasali, E ; Moradi, M ; Derakhshandeh, M. R ; Alizadeh, M ; Shahedi Asl, M ; Ebadzadeh, T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A near fully dense mullite-TiB2-CNTs hybrid composite was prepared successfully trough spark plasma sintering. 1 wt%CNT and 10 wt%TiB2 were mixed with nano-sized mullite powders using a high energy mixer mill. Spark plasma sintering was carried out at 1350 °C under the primary and final pressure of 10 MPa and 30 MPa, respectively. XRD results showed mullite and TiB2 as dominant crystalline phases accompanied by tiny peaks of alumina. The microstructure of prepared composites demonstrated uniform distribution of TiB2 reinforcements in mullite matrix without any pores and porosities as a result of near fully densified spark plasma sintered composite. The fracture surface of composite revealed... 

    Preparation and characterization of nanocrystalline misch-metal-substituted yttrium iron garnet powder by the sol-gel combustion process

    , Article International Journal of Applied Ceramic Technology ; Volume 5, Issue 5 , 26 August , 2008 , Pages 464-468 ; 1546542X (ISSN) Hosseini Vajargah, S ; Madaah Hosseini, H. R ; Nemati, Z. A ; Sharif University of Technology
    2008
    Abstract
    Nanocrystalline Y3-xMMxFe5O12 powders (MM denotes Misch-metal, x = 0.0, 0.25, 0.5, 0.75, and 1.0) were synthesized by a sol-gel combustion method. Magnetic properties and crystalline structures were investigated using X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), and a scanning electron microscope. The XRD patterns showed that the single-phase garnet of Y3-xMMxFe5O12 was formed at x values ≤ 1.0. The saturation magnetization of powders increased with decreasing MM content and reached the maximum value at Y3 Fe5O12. The crystallite size of powders calcined at 800°C for 3 h was in the range of 38-53 nm. © 2008 American Ceramic Society  

    Oxygen barrier properties of poly(ethylene terephthalate) nanocomposite films

    , Article Macromolecular Materials and Engineering ; Volume 294, Issue 1 , 2009 , Pages 68-74 ; 14387492 (ISSN) Frounchi, M ; Dourbash, A ; Sharif University of Technology
    2009
    Abstract
    Nanocomposites of poly(ethylene terephthalate) and two different montmorillonite-based organoclays were prepared by a co-rotating twin screw extruder. Dispersion of nanoclays in the polymer matrix was examined by TEM and XRD. Nanocomposites with lower content of organoclay showed exfoliated morphology while by increasing the amount of organoclay the intercalated morphology was more prevalent. Both organoclays had a good intercalation with PET and were uniformly dispersed within the polymer. Oxygen permeability of thin films of nanocomposites showed that the nanocompo-sites had better oxygen barrier properties than the neat PET. Tensile and impact properties of the nanocomposites also were... 

    Oxygen barrier LDPE/LLDPE/organoclay nano-composite films for food packaging

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , 2008 , Pages 22-27 ; 10221360 (ISSN) Dadbin, S ; Noferesti, M ; Frounchi, M ; Sharif University of Technology
    2008
    Abstract
    This study intends to replace polyethylene multi-layer films used in food packaging industry with single-layer polyethylene nanocomposites films. Nanocomposites of LDPE/LLDPE/ montmorillonite organoclay were prepared by melt compounding in a twin extruder and then film blown to prepare thin films. LLDPE-g-MA was used as compatibilizer to achieve better interaction between the blend and organoclay. Various compositions of organoclay and compatibilizer were prepared. The structure of nanocomposites was characterized by XRD and TEM. Permeability properties were measured using a permeability measuring set-up and aspect ratio of the particles was evaluated using permeability data. The results... 

    Optimization of a serpentine model for low-dispersion flows in micro channel turns

    , Article 5th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2009, Lviv-Polyana, 22 April 2009 through 24 April 2009 ; 2009 , Pages 136-140 ; 9789662191066 (ISBN) Fathollahi, E ; Afsharikia, S ; Taghizadeh Manzari, M.T ; Sharif University of Technology
    2009
    Abstract
    Chip-based micro fluidic separation systems often use serpentine channels to attain long separation lengths in a compact area. Such designs suffer from the dispersion, mostly 'racetrack' effect, due to the bends in the micro channels. The main goal of this paper is obtaining a model which has minimal racetrack in a serpentine geometry. A numerical analysis leads us to an optimized model which is different from previous attempts in this field. Our model uses modified turn radii, optimal length between bends with a constant zeta-potential boundary condition and a constant width through micro channel turns. It is shown that traveling fluid in this geometry has minimal dispersion as well as... 

    Observation of two α-relaxation peaks in a nanoclay-filled epoxy compound

    , Article Journal of Materials Science ; Volume 43, Issue 21 , 2008 , Pages 6992-6997 ; 00222461 (ISSN) Marouf, B. T ; Bagheri, R ; Pearson, R. A ; Sharif University of Technology
    2008
    Abstract
    A study was conducted to report an observation on the effect of nanoclay fillers on the α-relaxation in an epoxy resin. The observation provided useful facts about glass transition processes in nanoclay-filled epoxy composites. The investigation involved the synthesis of intercalated-exfoliated clay-epoxy compounds, by swelling an organophilic montmorillonite in an aromatic epoxy resin and polymerization. The epoxy resin used in the study was a diglycidyl ether of bisphenol A (DGEBA), EPON 828, with an equivalent weight of 184-190 g/eq from Hexion Specialty Chemicals. The epoxy resin was cured with piperidine, obtained from Sigma-Aldrich. Nanomer® 1.30E. An octadecyl amine treated... 

    Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection

    , Article Sensors and Actuators, B: Chemical ; Volume 283 , 2019 , Pages 831-841 ; 09254005 (ISSN) Naghdloo, A ; Ghazimirsaeed, E ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Nucleic acid amplification via polymerase chain reaction (PCR) is one of the essential and powerful methods used in a myriad of bio-assays in clinical laboratories. Application of microfluidic devices in biologically-related processes like PCR can result in the usage of less volume of reactant samples and reduce the processing time. By implementing PCR systems on centrifugal microfluidic platforms, automation and portability can be easily achieved. Although several methods have been developed, most of them are still dealing with challenges of the required high processing time. This study presents the numerical simulation of a fully automated PCR system with the goal of enhancing the mixing... 

    Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 104 , 2016 , Pages 243-252 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Akbari, A ; Sharif University of Technology
    Elsevier, B.V  2016
    Abstract
    Centrifugal microfluidics or the Lab on a CD (LOCD) has developed vast applications in biomedical researches and analyses. Fluid mixing is an application of the LOCD. In this paper, multiple centrifugal micromixers were simulated. Various parameters were originally presumed to have an effect on mixing performance. These parameters include inlet angle, angular velocity, cross-sectional profile, perpendicular length ratio and the number of channels in series. They were each analyzed through simulations. It was gathered that the inlet angle does not significantly affect the mixing quality. Increasing angular velocity steadily increases mixing quality for all geometries. The vertical triangular... 

    Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)

    , Article Renewable Energy ; Volume 35, Issue 1 , 2010 , Pages 226-231 ; 09601481 (ISSN) Hasani-Sadrabadi, M.M ; Dashtimoghadam, E ; Ghaffarian, S.R ; Hasani Sadrabadi, M.H ; Heidari, M ; Moaddel, H ; Sharif University of Technology
    2010
    Abstract
    In the present research, proton exchange membranes based on partially sulfonated poly (ether sulfone) (S-PES) with various degrees of sulfonation were synthesized. It was found that the increasing of sulfonation degree up to 40% results in the enhancement of water uptake, ion exchange capacity and proton conductivity properties of the prepared membranes to 28.1%, 1.59 meq g -1, and 0.145 S cm -1, respectively. Afterwards, nanocomposite membranes based on S-PES (at the predetermined optimum sulfonation degree) containing various loading weights of organically treated montmorillonite (OMMT) were prepared via the solution intercalation technique. X-ray diffraction patterns revealed the... 

    Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure

    , Article Journal of Biomechanics ; Volume 42, Issue 10 , 2009 , Pages 1560-1565 ; 00219290 (ISSN) Ghanbari, J ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone...