Loading...
Search for: shojaei--a
0.013 seconds
Total 102 records

    Online analysis of local field potentials for seizure detection in freely moving rats

    , Article Iranian Journal of Basic Medical Sciences ; Volume 23, Issue 2 , 2020 , Pages 173-177 Zare, M ; Nazari, M ; Shojaei, A ; Raoufy, M. R ; Mirnajafi Zadeh, J ; Sharif University of Technology
    Mashhad University of Medical Sciences  2020
    Abstract
    Objective(s): Seizure detection during online recording of electrophysiological parameters is very important in epileptic patients. In the present study, online analysis of field potential recordings was used for detecting spontaneous seizures in epileptic animals. Materials and Methods: Epilepsy was induced in rats by pilocarpine injection. During the chronic period of the pilocarpine model, local field potential (LFP) recording was run for at least 24 hr. At the same time, video monitoring of the animals was done to determine the real time of seizure occurrence. Both power and sample entropy of LFP were used for online analysis. Results: Obtained results showed that changes in LFP power... 

    Thermally oxidized Nanodiamond: an effective sorbent for separation of methotrexate from aqueous media: synthesis, characterization, in vivo and in vitro biocompatibility study

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 29, Issue 3 , 2019 , Pages 701-709 ; 15741443 (ISSN) Zamani, M ; Aghajanzadeh, M ; Molavi, H ; Danafar, H ; Shojaei, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In the present study the effect of nanodiamond (ND) on the adsorption capacity of Drug has been investigated. Thermal oxidation nanodiamond (OND) was used as adsorbents for Methotrexate adsorption. The surface properties of NDs were studied by Fourier transform infrared spectroscopy and zeta potential. It was determined that thermal oxidation changed the surface properties of ND, including increase the amount of carboxylic acid groups and decreasing the zeta potential of ND by increasing the thermal oxidation time. The adsorption experiments showed that untreated ND (UND) has large adsorption capacity and fast adsorption kinetic for methotrexate (MTX). These results suggest that the... 

    PH-responsive nanostructured polyaniline capsules for self-healing corrosion protection: the influence of capsule concentration

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 3512-3520 ; 10263098 (ISSN) Tavandashti, N. P ; Ghorbani, M ; Shojaei, A ; Mol, J. M. C ; Terryn, H ; Gonzalez Garcia, Y ; Sharif University of Technology
    Abstract
    Nanostructured hollow polyaniline (PANI) capsules are good candidates for encapsulation of corrosion inhibitors and pH-responsive release when incorporated into organic coatings. In previous studies, the corrosion protection performance of PANI capsules, containing organic inhibitor 2-Mercaptobenzothiazole (MBT), was demonstrated. The present work studies the influence of capsule concentrations (i.e., 0.3, 1, and 2 wt%) on the corrosion protection properties of the coating system. Anti-corrosion properties of different coatings were compared by means of Electrochemical Impedance Spectroscopy (EIS) and Scanning Vibrating Electrode Technique (SVET). MBT loaded PANI capsules in epoxy ester... 

    Adsorption behavior of a Gd-Based metal-organic framework toward the quercetin drug: effect of the activation condition

    , Article ACS Omega ; Volume 7, Issue 45 , 2022 , Pages 41177-41188 ; 24701343 (ISSN) Tajahmadi, S ; Shamloo, A ; Shojaei, A ; Sharifzadeh, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    A carboxylate gadolinium-based metal-organic framework (Gd-MOF) is an exceptional candidate for magnetic resonance imaging agents, but its low drug adsorption capacity hinders this MOF from being used as a theragnostic agent. In this work, the Gd-MOF was synthesized by a simple solvothermal method. Then, different activation situations, including various solvents over different time periods, were applied to enhance the specific surface area of the synthesized MOF. Different characterization analyses such as X-ray diffraction and Brunauer-Emmett-Teller along with experimental quercetin adsorption tests were done to study the crystalline and physical properties of various activated MOFs. In... 

    A novel fault tolerant reconfigurable concept for vector control of induction motors

    , Article EPE-PEMC 2006: 12th International Power Electronics and Motion Control Conference, Portoroz, 30 August 2006 through 1 September 2006 ; 2007 , Pages 1199-1204 ; 1424401216 (ISBN); 9781424401215 (ISBN) Tahami, F ; Shojaei, A ; Sharif University of Technology
    2007
    Abstract
    AC drive users with sophisticated applications are demanding greater reliability to avoid process interruptions. AC motor drive systems are susceptible to sensors failure. A novel fault tolerant Field Oriented Control system for induction motors is introduced. The system maintains speed control in the event of sensors malfunction and adverse signal conditions, providing enhanced reliability. Different motor models are combined by a Fuzzy aggregation system in order to give a reliable estimate of flux vector. The proposed control system is an effective and easy to implement method giving a potential for motor drive reliability enhancement. © 2006 IEEE  

    A diversity based reconfigurable method for fault tolerant control of induction motors

    , Article International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006, Taormina, 23 May 2006 through 26 May 2006 ; Volume 2006 , 2006 , Pages 66-71 ; 1424401941 (ISBN); 9781424401949 (ISBN) Tahami, F ; Shojaei, A ; Ahmadi Khatir, D ; Sharif University of Technology
    2006
    Abstract
    AC motor drive systems are sensitive to faults occurring at the power inverter, or at the control system. A novel fault tolerant Field Oriented Control system for induction motors is introduced. The system maintains speed control in the event of sensors malfunction and adverse signal conditions, providing enhanced reliability. The system comprises four different flux estimators which are fused by a Fuzzy aggregation system in order to give a reliable estimate of motor flux. The proposed control system is an effective and easy to implement method giving a potential for motor drive reliability enhancement. © 2006 IEEE  

    A flat polymeric membrane sensor for carbon dioxide/nitrogen gas mixture

    , Article Chemical Engineering Communications ; Volume 204, Issue 4 , 2017 , Pages 445-452 ; 00986445 (ISSN) Shabani, E ; Mousavi, S. A ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    A gas sensor was developed to measure the concentration of binary gas mixtures. This sensor works based on the permeability change of different gas mixtures across the polymeric membranes. Although high values of permeability and selectivity are needed for an ideal separation, the performance of this sensor mainly depends on the permeability factor. Polysulfone and silicone rubber were applied as the membrane base and coat, respectively. Moreover, in contrast to existing polymeric sensors that use hollow fibers, the present sensor is made of flat membranes. This new design is cheaper, smaller, and easier to use in comparison to the hollow fiber polymeric sensors. In order to test the sensor... 

    Bio-based UV curable polyurethane acrylate: Morphology and shape memory behaviors

    , Article European Polymer Journal ; Volume 118 , 2019 , Pages 514-527 ; 00143057 (ISSN) Salkhi Khasraghi, S ; Shojaei, A ; Sundararaj, U ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Smart bio-based shape memory polymers with high performance and fast response have the exciting potential to meet the growing need in biomedical applications. In this study, novel fast response UV-curable shape memory polyurethane acrylates (SMPUAs) comprising polycaprolactone diols (PCL-Diol), hexamethylene diisocyanate (HDI) and hydroxy-methyl methacrylate (HEMA) were synthesized by two-step bulk polymerization. Two series of PUAs with almost the same amount of hard segment content (HSC) were prepared with varying soft-segment molecular weight (2000, 3000, and 4000 g/mol) and different molar ratios of constituents. A mono-functional reactive diluent was used to control HSC and reduce the... 

    Highly biocompatible multifunctional hybrid nanoparticles based on Fe3O4 decorated nanodiamond with superior superparamagnetic behaviors and photoluminescent properties

    , Article Materials Science and Engineering C ; Volume 114 , September , 2020 Salkhi Khasraghi, S ; Shojaei, A ; Sundararaj, U ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The multifunctional nanostructures with superparamagnetic and luminescent properties undergo revolution in the field of bio-nanotechnology. In this article, we reported a facile and efficient one-step modified co-precipitation method to load superparamagnetic Fe3O4 nanoparticle on oxidized nanodiamond (Ox-ND). Subsequently, the as-prepared Ox-ND/Fe3O4 hybrid nanoparticle was surface functionalized with vinyltrimethoxysilane (VTMS) to enhance its compatibility with organic media. The structure, morphology, magnetic, and optical properties of the nanohybrid were systematically investigated. The results confirmed successful loading of crystalline Fe3O4 on the surface of Ox-ND. Ox-ND/Fe3O4... 

    Efficient inductively heated shape memory polyurethane acrylate network with silane modified nanodiamond@Fe3O4 superparamagnetic nanohybrid

    , Article European Polymer Journal ; Volume 159 , 2021 ; 00143057 (ISSN) Salkhi Khasraghi, S ; Shojaei, A ; Janmaleki, M ; Sundararaj, U ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Multifunctional magnetic shape memory polymer (SMP) nanocomposites with high sensitivity was synthesized through inclusion of silane functionalized nanodiamond@Fe3O4 (S-NDF) hybrid nanoparticle into polycaprolactone (PCL) based polyurethane acrylate (PUA) matrix followed by in situ crosslinking of the matrix. Highly biocompatible and superparamagnetic nanodiamond(ND)@Fe3O4 nanohybrids were synthesized through in situ co-precipitation method. The morphological analysis suggested that S-NDFs filled PUAs (2 to 9 wt% loadings) well interacted with both soft and hard domains of the matrix. The base polymer and the nanocomposites presented excellent shape fixity ratio (above 97%) and shape... 

    Tire tread performance of silica-filled SBR/BR rubber composites incorporated with nanodiamond and nanodiamond/nano-SiO2 hybrid nanoparticle

    , Article Diamond and Related Materials ; Volume 126 , 2022 ; 09259635 (ISSN) Salkhi Khasraghi, S ; Momenilandi, M ; Shojaei, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In the present research, the influence of nanodiamond (ND) and a physical hybrid of ND and fumed nano-SiO2 were investigated on the performance of a typical tire tread compound. The styrene-butadiene rubber (SBR) and cis-butadiene rubber (BR) blend filled with a commercial grade highly dispersive silica at 70 phr loading were used as typical tire tread compound. ND was substituted partially with silica at two different concentrations of 5 and 10phr. Meanwhile, 5 phr of ND/nano-SiO2 hybrids with the weight ratio of 2.5/2.5 and 1/4 were substituted with silica. ND-Filled compounds exhibit increased scorch and cure time compared to controls. Improvement in different characteristics of the... 

    Theoretical and Experimental Study on the Adsorption and Desorption of Methane by Granular Activated Carbon at 25°C

    , Article Journal of Natural Gas Chemistry ; Volume 16, Issue 4 , December , 2007 , Pages 415-422 ; 10039953 (ISSN) Salehi, E ; Taghikhani, V ; Ghotbi, C ; Nemati Lay, E ; Shojaei, A ; Sharif University of Technology
    2007
    Abstract
    A theoretical and experimental study was conducted to accurately determine the amount of adsorption and desorption of methane by various Granular Activated Carbon (GAC) under different physical conditions. To carry out the experiments, the volumetric method was used up to 500 psia at constant temperature of 25 °C. In these experiments, adsorption as well as desorption capacities of four different GAC in the adsorption of methane, the major constituent of natural gas, at various equilibrium pressures and a constant temperature were studied. Also, various adsorption isotherm models were used to model the experimental data collected from the experiments. The accuracy of the results obtained... 

    Effect of rubber component on the performance of brake friction materials

    , Article Wear ; Volume 274-275 , January , 2012 , Pages 286-297 ; 00431648 (ISSN) Saffar, A ; Shojaei, A ; Sharif University of Technology
    2012
    Abstract
    Various composite friction materials containing 40. vol.% organic binder (phenolic resin plus styrene-butadiene-rubber (SBR)) with varying phenolic-resin/SBR ratio were prepared. The content of phenolic resin in each composite was indicated by the resin value (RV) index ranging between 0 and 100%. The composites with RVs greater than 50% form resin-based friction materials in which the primary binder is the phenolic resin. For RVs less than 50%, the composites become the rubber-based materials where the primary binder is the SBR. The analysis of mechanical properties exhibited that the conformability of the composites increases upon incorporation of SBR. The frictional analysis revealed that... 

    Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials

    , Article Wear ; Volume 269, Issue 1-2 , May , 2010 , Pages 145-151 ; 00431648 (ISSN) Saffar, A ; Shojaei, A ; Arjmand, M ; Sharif University of Technology
    2010
    Abstract
    An attempt was made to examine thermal effects as well as fade and wear characteristics of rubber-based friction materials (RBFMs). A series of RBFMs with and without fiber reinforcements were prepared. The fiber reinforcements used were carbon fiber, cellulose fiber and aramid pulp. A semi-empirical model describing the correlation of coefficient of friction (COF) and temperature was presented. The effectiveness of the model was evaluated using the experimental data. The results revealed that the model parameters for a given composite show a significant change above a critical sliding velocity, i.e. 300 rpm. This behavior was speculated to be due to the transition of rubbery state of the... 

    Estimating the connected volume of hydrocarbon during early reservoir life by percolation theory

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 3 , Nov , 2014 , p. 301-308 ; ISSN: 15567036 Sadeghnejad, S ; Masihi, M ; Pishvaie, M ; Shojaei, A ; King, P. R ; Sharif University of Technology
    Abstract
    The petroleum industry tends to paint an optimistic picture with respect to future petroleum availability. In order to anticipate demand, the size of connected volume of hydrocarbon of fields needs to be known. During the early stage of life of a reservoir, due to the lake of certain data, connected volume of hydrocarbon is usually based on analogues or rules of thumb and not detailed reservoir modeling. Therefore, there is a great incentive to produce physically-based methodologies to make an estimation of connected volume of hydrocarbon. Percolation theory is used to estimate the connected volume of hydrocarbon very fast. Furthermore, the result has been validated against areal field... 

    Field Scale Characterization of Geological Formations Using Percolation Theory

    , Article Transport in Porous Media ; Vol. 92, issue. 2 , March , 2012 , p. 357-372 ; ISSN: 1693913 Sadeghnejad, S ; Masihi, M ; Shojaei, A ; Pishvaie, M ; King, P. R ; Sharif University of Technology
    Abstract
    The connectivity of high conductivity pathways in geological formations depend on the spatial distribution of geological heterogeneities that may appear on various length scales. Appropriate modeling of this is crucial within in hydrology and petroleum systems. The approach taken in this study is to use percolation theory to quantify the connectivity, hydraulic conductivity, and breakthrough time behavior between an injector and a producer within such systems. In particular, a three-dimensional overlapping sandbody model is considered which assumes that the geological formation can be split into either conductive flow units (i. e., good sands) or non-conductive units (i. e., poor sands). The... 

    Utilization of percolation approach to evaluate reservoir connectivity and effective permeability: A case study on North Pars gas field

    , Article Scientia Iranica ; Vol. 18, issue. 6 , December , 2011 , p. 1391-1396 ; ISSN: 10263098 Sadeghnejad, S ; Masihi, M ; Pishvaie, M ; Shojaei, A ; King, P. R ; Sharif University of Technology
    Abstract
    Reservoir characterization, especially during early stages of reservoir life, is very uncertain, due to the scarcity of data. Reservoir connectivity and permeability evaluation is of great importance in reservoir characterization. The conventional approach to addressing this is computationally very expensive and time consuming. Therefore, there is a great incentive to produce much simpler alternative methods. In this paper, we use a statistical approach called the percolation theory, which considers a hypothesis wherein the reservoir can be split into either permeable (i.e. sand/fracture) or impermeable flow units (i.e. shale/matrix), and assumes that the connectivity of permeability... 

    Field scale characterization of geological formations using percolation theory

    , Article Transport in Porous Media ; Volume 92, Issue 2 , 2012 , Pages 357-372 ; 01693913 (ISSN) Sadeghnejad, S ; Masihi, M ; Shojaei, A ; Pishvaie, M ; King, P. R ; Sharif University of Technology
    2012
    Abstract
    The connectivity of high conductivity pathways in geological formations depend on the spatial distribution of geological heterogeneities that may appear on various length scales. Appropriate modeling of this is crucial within in hydrology and petroleum systems. The approach taken in this study is to use percolation theory to quantify the connectivity, hydraulic conductivity, and breakthrough time behavior between an injector and a producer within such systems. In particular, a three-dimensional overlapping sandbody model is considered which assumes that the geological formation can be split into either conductive flow units (i. e., good sands) or non-conductive units (i. e., poor sands). The... 

    Utilization of percolation approach to evaluate reservoir connectivity and effective permeability: A case study on North Pars gas field

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1391-1396 ; 10263098 (ISSN) Sadeghnejad, S ; Masihi, M ; Pishvaie, M ; Shojaei, A ; King, P. R ; Sharif University of Technology
    2011
    Abstract
    Reservoir characterization, especially during early stages of reservoir life, is very uncertain, due to the scarcity of data. Reservoir connectivity and permeability evaluation is of great importance in reservoir characterization. The conventional approach to addressing this is computationally very expensive and time consuming. Therefore, there is a great incentive to produce much simpler alternative methods. In this paper, we use a statistical approach called the percolation theory, which considers a hypothesis wherein the reservoir can be split into either permeable (i.e. sand/fracture) or impermeable flow units (i.e. shale/matrix), and assumes that the connectivity of permeability... 

    Effect of anisotropy on the scaling of connectivity and conductivity in continuum percolation theory

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 81, Issue 6 , June , 2010 ; 15393755 (ISSN) Sadeghnejad, S ; Masihi, M ; King, P. R ; Shojaei, A ; Pishvaei, M ; Sharif University of Technology
    2010
    Abstract
    We investigate the effects of anisotropy on the finite-size scaling of connectivity and conductivity of continuum percolation in three dimensions. We consider a system of size X×Y×Z in which cubic bodies of size a×b×c are placed randomly. We define two aspect ratios to request anisotropy then we expect that the displacement of average connected fraction P (averaged over the realizations), about the isotropic universal curves will be a function of the two aspect ratios. This is accounted by considering an apparent percolation threshold in each direction which leads to 50% of realizations connecting in that direction. We find the aspect ratios' dependency of the apparent threshold and...