Loading...
Search for: removal-efficiencies
0.007 seconds
Total 46 records

    Numerical and Experimental Modeling of Moving Bodies at Clean Room

    , M.Sc. Thesis Sharif University of Technology Fazel Neishabouri, Ali (Author) ; Hassan Saidi, Mohammad (Supervisor) ; Mozafari, Ali Asghar (Co-Advisor)
    Abstract
    In the recent decades, cleanrooms have found growing applications in broad range of industries such as pharmacy and microelectronics. Concerns about negative effects of the contaminant exposure on the human health and product quality motivate many researchers towards understanding of the airflow and contaminant distribution through these environments. With an improvement in computational capacity of the computers, computational fluid dynamics (CFD) technique has become a powerful tool to study the engineering problems including indoor air quality (IAQ). In this research, indoor airflow in a full-scale cleanroom is investigated numerically using Eulerian–Eulerian approachand the results are... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; 2018 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; Volume 206, Issue 4 , 2019 , Pages 495-508 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Photocatalytic degradation of vancomycin using titanium dioxide and optimization by central composite design

    , Article International Journal of Environmental Science and Technology ; Volume 19, Issue 9 , 2022 , Pages 8957-8968 ; 17351472 (ISSN) Dehghani, F ; Yousefinejad, S ; Dehghani, M ; Borghei, S. M ; Javid, A. H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Conventional wastewater treatment processes are not completely effective in removing vancomycin. In this study, affecting parameters on vancomycin degradation, such as pH, catalyst, initial vancomycin concentration, temperature, and reaction time were investigated simultaneously during a removal process based on titanium dioxide with ultraviolet irradiation in an aqueous solution. Titanium dioxide was synthesized and characterized using X-ray diffraction and scanning electron microscopy. The average size of the synthesized crystals was 4.7 (± 0.2) nm. Design of experiments was done by a central composite design based on the response surface methodology and multiple linear regression was... 

    Studies on the catalyst preparation methods and kinetic behavior of supported cobalt catalysts for the complete oxidation of cyclohexane

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 114, Issue 2 , Jan , 2015 , Pages 611-628 ; 18785190 (ISSN) Zabihi, M ; Khorasheh, F ; Shayegan, J ; Sharif University of Technology
    Springer Netherlands  2015
    Abstract
    Low cost dispersed supported cobalt oxide nanocatalysts on activated carbon (AC) were prepared by two different methods: (1) combined impregnation and deposition–precipitation (IMP-DP) and (2) heterogeneous deposition–precipitation (HDP). XRD, TEM, FESEM, BET and Boehm techniques were used for the characterization of the support and the catalysts. Characterization analyses indicated the negative effect of the wet impregnation method on the IMP-DP technique for the preparation of catalysts for the total oxidation of cyclohexane in air. The catalysts prepared by HDP and IMP-DP methods were found to have significant differences in oxidation activity, morphology, particle size, and shape of... 

    Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air

    , Article RSC Advances ; Volume 5, Issue 7 , Dec , 2015 , Pages 5107-5122 ; 20462069 (ISSN) Zabihi, M ; Khorasheh, F ; Shayegan, J ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Copper and cobalt oxides supported on almond shell derived activated carbon (AC) with different loadings were synthesized by sequential and co-deposition-precipitation methods leading to Cu(shell)/Co(core)/AC, Co(shell)/Cu(core)/AC and Cu-Co(mixed)/AC catalysts that were subsequently used for catalytic oxidation of gaseous mixtures of toluene and cyclohexane in air in a tubular flow reactor. The catalysts and the support were characterized by Boehm test, Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy... 

    Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue

    , Article RSC Advances ; Volume 6, Issue 13 , 2016 , Pages 10430-10437 ; 20462069 (ISSN) Pourjavadi, A ; Nazari, M ; Kabiri, B ; Hosseini, S. H ; Bennett, C ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Porous nanocomposite hydrogels were prepared using CaCO3 particles as solid porogens. The hydrogels were prepared by polymerization and grafting of acrylamide and 2-acrylamido-2-methylpropane sulfonic acid onto the starch in the presence of CaCO3 and graphene oxide. CaCO3 solid porogens were then removed by washing with acid and porous structures were obtained. The prepared hydrogels were used as adsorbents for methylene blue as a model cationic dye; and a very high adsorption capacity, up to 714.29 mg g-1, was obtained. Kinetics and isotherms of adsorption and the effect of porosity of hydrogel as well as other experimental conditions were also investigated. The prepared adsorbents were... 

    Zeolite-based catalytic micromotors for enhanced biological and chemical water remediation

    , Article New Journal of Chemistry ; Volume 44, Issue 44 , 2020 , Pages 19212-19219 Abedini, F ; Madaah Hosseini, H. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Zeolite-based micromotors were developed to eliminate the biological and chemical contamination of water in a fast and efficient way. The motors consist of a silver-exchanged zeolite core and a partial catalytic coating. These porous engines showed rapid killing of Pseudomonas aeruginosa bacteria cells in a very short time, less than 7.5 minutes. The heavy metal uptake of the zeolitic motors during the first 20 minutes of contact was considerably higher than that of zeolite particles by 23% for Pb2+, 19% for Co2+, and 16% for Ni2+. Also, the maximum removal efficiency of the motors (at room temperature and for 6 hours) for Pb2+, Co2+, and Ni2+ was 93%, 87%, and 78%, respectively, higher than... 

    Facile template-free synthesis of new α-MnO2 nanorod/silver iodide p-n junction nanocomposites with high photocatalytic performance

    , Article New Journal of Chemistry ; Volume 44, Issue 18 , 2020 , Pages 7401-7411 Salari, H ; Kohantorabi, M ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    In the present study, a novel α-MnO2/AgI photocatalyst was successfully fabricated by using hydrothermal/precipitation methods, and its photocatalytic performance was evaluated from the degradation of Acid blue 92 (AB92) dye under visible light irradiation. The surface and crystalline structure, morphology, and electro-chemical properties of the as-made photocatalyst were investigated by BET, XRD, XPS, SEM-EDS, TEM, DRS, PL, PC, and Raman analysis. The optimized nanocomposite (α-MnO2/AgI) with a weight ratio of 1:15 showed the best photocatalytic activity in the decomposition of AB92 with a removal efficiency of 100% in 40 min which was better than that of pure α-MnO2 (48%) and AgI (61%),... 

    Fabrication and characterization of maleic anhydride grafted polypropylene membranes with high antifouling properties

    , Article Journal of Applied Polymer Science ; Volume 133, Issue 36 , 2016 ; 00218995 (ISSN) Jahanbakhshi, N ; Mousavi, S. A ; Farhadi, F ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Abstract
    In this study, maleic anhydride grafted polypropylene microporous flat-sheet membranes were prepared via a thermally induced phase separation method with a mixture of dibutyl phthalate and dioctyl phthalate as a diluent. The effects of the polymer composition and coagulation bath temperature on the morphology and performance of the fabricated membranes were investigated. The hydrophilicity results of the membranes demonstrated that membrane modification reduced the water contact angle by about 45°, whereas the pure water flux was enhanced about four times. The antifouling behavior of the fabricated membranes was also investigated in a membrane bioreactor. The results show that the pure water... 

    Concurrent photocatalytic degradation and filtration with bi-plasmonic TiO2 for wastewater treatment

    , Article Micro and Nano Letters ; Volume 16, Issue 3 , 2021 , Pages 194-202 ; 17500443 (ISSN) Anvari, A ; Amoli Diva, M ; Sadighi Bonabi, R ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    A new photocatalytic filtration membrane was prepared by grafting of Ag–Au bi-plasmonic shell-on TiO2@Fe3O4 nanoparticles as a magnetically-separable heterogeneous photocatalyst to a poly acrylic acid-modified cellulose acetate membrane for decomposition and removal of methyl orange as a model pollutant from textile wastewater samples. Eight photocatalysts including five Au NPs-modified TiO2@Fe3O4 NPs and three Ag-Au bi-plasmonic NPs-decorated TiO2@Fe3O4 NPs with different shell thickness were synthesized and characterized by TEM, UV–vis, and SEM techniques and their photocatalytic activity was assessed using two radiation sources. After selection of optimum photocatalyst and modification of... 

    Particle removal optimization in rotating dissolved air flotation used in paper-recycling wastewater treatment

    , Article Water and Environment Journal ; 2021 ; 17476585 (ISSN) Hasannattaj Jelodar, A ; Amini Rad, H ; Borghei, S. M ; Vossoughi, M ; Rouhollahi, R ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Rotating dissolved air flotation (RDAF) has been utilized for several decades in paper-recycling wastewater treatment; however, it has rarely been addressed in the literature, which makes research into this system challenging and complicated. However, in this work, a full-scale industrial wastewater treatment system for a paper-recycling mill in Mazandaran province, Iran, was evaluated. Experiments indicated that under the same wastewater and chemical conditions, there are differences in the removal efficiencies. This finding was investigated by conducting simulation in ANSYS CFX R18.0 and experimentation simultaneously. Thus, the main purpose of this research was to optimize the operation... 

    Particle removal optimization in rotating dissolved air flotation used in paper-recycling wastewater treatment

    , Article Water and Environment Journal ; Volume 36, Issue 1 , 2022 , Pages 3-17 ; 17476585 (ISSN) Hasannattaj Jelodar, A ; Amini Rad, H ; Borghei, S. M ; Vossoughi, M ; Rouhollahi, R ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Rotating dissolved air flotation (RDAF) has been utilized for several decades in paper-recycling wastewater treatment; however, it has rarely been addressed in the literature, which makes research into this system challenging and complicated. However, in this work, a full-scale industrial wastewater treatment system for a paper-recycling mill in Mazandaran province, Iran, was evaluated. Experiments indicated that under the same wastewater and chemical conditions, there are differences in the removal efficiencies. This finding was investigated by conducting simulation in ANSYS CFX R18.0 and experimentation simultaneously. Thus, the main purpose of this research was to optimize the operation... 

    Evaluation of trichloroethylene degradation by starch supported Fe/Ni nanoparticles via response surface methodology

    , Article Water Science and Technology ; Volume 73, Issue 4 , 2016 , Pages 935-946 ; 02731223 (ISSN) Nikroo, R ; Alemzadeh, I ; Vossoughi, M ; Haddadian, K ; Sharif University of Technology
    IWA Publishing 
    Abstract
    In this study, degradation of trichloroethylene (TCE), a chlorinated hydrocarbon, using starch supported Fe/Ni nanoparticles was investigated. The scanning electron microscope images showed applying water soluble starch as a stabilizer for the Fe/Ni nanoparticles tended to reduce agglomeration and discrete particle. Also the mean particle diameter reduced from about 70 nm (unsupported Fe/Ni nanoparticle) to about 30 nm. Effects of three key independent operating parameters including initial TCE concentration (10.0-300.0 mg L-1), initial pH (4.00-10.00) and Fe0 dosage (0.10-2.00) g L-1 on TCE dechlorination efficiency in 1 hour were analysed by employing response surface methodology (RSM).... 

    Functionalized magnetic nanoparticles supported on activated carbon for adsorption of Pb(II) and Cr(VI) ions from saline solutions

    , Article Journal of Environmental Chemical Engineering ; Volume 5, Issue 2 , 2017 , Pages 1754-1762 ; 22133437 (ISSN) Fatehi, M. H ; Shayegan, J ; Zabihi, M ; Goodarznia, I ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Adsorption ability of prepared magnetic nanoparticles supported on activated carbon (AC-MNPs) was evaluated to synthesize an efficient and a low cost adsorbent for removal of Pb(II) and Cr(VI) ions from single and binary component aqueous solutions in the presence of salinity. Magnetic adsorbent was prepared by co-precipitation over activated carbon derived from almond shell by physical activation method. AC-MNPs was modified by oxygen containing functional groups to enhance the adsorption capacity of adsorbent. XRD, XPS, BET, Boehm, TEM, FT-IR, DLS and XRF were used to characterize the AC@Fe3O4@SiO2-NH2-COOH. Characterization analyses indicated the high dispersion of Fe3O4 crystallites on... 

    Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes

    , Article Chemosphere ; Volume 263 , 2021 ; 00456535 (ISSN) Masjoudi, M ; Golgoli, M ; Ghobadi Nejad, Z ; Sadeghzadeh, S ; Borghei, S. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The presence of pharmaceutical micropollutants in water and wastewater is considered a serious environmental issue. To eliminate these pollutants, biodegradation of pharmaceuticals using enzymes such as laccase, is proposed as a green method. In this study, immobilized laccase was used for the removal of two model pharmaceutical compounds, carbamazepine and diclofenac. Polyvinylidene fluoride (PVDF) membrane modified with multi-walled carbon nanotubes (MWCNTs) were synthesized as a tailor-made support for enzyme immobilization. Covalently immobilized laccase from Trametes hirsuta exhibited remarkable activity and activity recovery of 4.47 U/cm2 and 38.31%, respectively. The results also... 

    Oxidation of toluene in humid air by metal oxides supported on Γ-alumina

    , Article Journal of Hazardous Materials ; Volume 333 , 2017 , Pages 293-307 ; 03043894 (ISSN) Esmaeilirad, M ; Zabihi, M ; Shayegan, J ; Khorasheh, F ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Monometallic and bimetallic supported metal oxides catalysts on γ-alumina were prepared by heterogeneous deposition-precipitation. The γ-alumina used as a support was synthesized by the sol-gel and the co-precipitation methods. Supports and catalysts were characterized by Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The performance of the prepared catalysts was studied for total oxidation of toluene in air at different relative humidity and oxidation temperatures. Efficiency of bimetallic catalysts for deep oxidation of toluene was... 

    New efficient inorganic-organic nanofibers electrospun membrane for fluorescence detection and removal of mercury (II) ions

    , Article Journal of Molecular Structure ; Volume 1179 , 2019 , Pages 242-251 ; 00222860 (ISSN) Tahvili, A ; Poush, M. K ; Ahmed, M ; Parsaee, Z ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, a new inorganic-organic nano fibrous membrane (PTSNFM) has been fabricated via immobilization of carbazol-based Schiff base (S) into a polyvinyl alcohol (PVA) - tetraethyl orthosilicate (TEOS) polymeric support using the electrospinning method. PTSNFM has been used as an optode to detect and remove of mercury (II) ions. The characterization of PTSNFM has been fully carried out using different methods including FE-SEM, TEM, AFM, viscosity, surface tension and conductivity. FE-SEM and FT-IR analysis demonstrated the binding of Hg (II) to the PTSNFM via chelating of Hg (II) to the Schiff base ligand. PTSNFM can detect Hg (II) in the dynamic range of 0.020–0.50 ng/mL, with the LOD... 

    Adsorptive desulfurization of wild naphtha using magnesium hydroxide-coated ceramic foam filters in pilot scale: Process optimization and sensitivity analysis

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 152 , 2020 Salehi, E ; Askari, M ; Afshar, S ; Eidi, B ; Aliee, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Ultra-deep desulfurization for production of clean fuels is of great significance from environmental outlook. In this paper, adsorptive desulfurization (ADS) of wild naphtha was investigated in pilot scale using Mg(OH)2-impregnated aluminosilicate ceramic foam filters (ASCFs) as adsorbent. Effects of four operating parameters including temperature, pressure, adsorption bed length and initial sulfur concentration on sulfur removal efficiency of the process were studied via central composite design of experiment methodology. Sobol's sensitivity analysis was employed to quantitatively determine the impacts of the operating parameters on the removal performance of the separation system. The... 

    Electrochemical oxidative desulfurization for high sulfur content crude gas-oil

    , Article Separation and Purification Technology ; Volume 248 , 2020 Tavan, Y ; Shahrokhi, M ; Farhadi, F ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Presence of sulfur components in liquid fuels should be controlled due to environmental issues and process considerations. In order to decrease the level of sulfurous compounds in crude gas-oil with 5750 ppmw sulfur, electrochemical oxidative desulfurization has been investigated over electrodes of copper and stainless steel because of their easy operation and mild process conditions. In this research, the effects of stirring rate, temperature, applied potential, sodium hydroxide addition as electrolyte media and water volume have been examined on the sulfur removal efficiency. The results show that electrical conductivity of gas-oil sharply increases with addition of electrolyte up to 613...