Loading...
Search for: removal
0.014 seconds
Total 426 records

    A zwitterion metal-organic framework for the removal of fluoride from an aqueous solution

    , Article Journal of Chemical Sciences ; Volume 134, Issue 3 , 2022 ; 09743626 (ISSN) Aliakbari, M ; Gholami, R. M ; Borghei, S. M ; Sharif University of Technology
    Springer  2022
    Abstract
    Excess fluoride is one of the water pollutants in the world, which is removed from water by chemical methods to produce sludge. On the other hand, techniques such as R.O. (Reverse Osmosis) also have problems with power consumption and wastewater disposal. Metal-organic frameworks are one of the newest adsorbents used to separate anions. In this study, MOF1 ({[Zn3L3(BPE)1.5]·4.5DMF}n) was used to remove fluoride from the aqueous solution. The influence of various factors such as pH, contact time, adsorbent amount, and temperature on fluoride uptake was investigated. Based on the results, the MOF synthesized in acidic media absorbs more fluoride ions. The reaction time in the first 20 min had... 

    Photocatalytic degradation of vancomycin using titanium dioxide and optimization by central composite design

    , Article International Journal of Environmental Science and Technology ; Volume 19, Issue 9 , 2022 , Pages 8957-8968 ; 17351472 (ISSN) Dehghani, F ; Yousefinejad, S ; Dehghani, M ; Borghei, S. M ; Javid, A. H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Conventional wastewater treatment processes are not completely effective in removing vancomycin. In this study, affecting parameters on vancomycin degradation, such as pH, catalyst, initial vancomycin concentration, temperature, and reaction time were investigated simultaneously during a removal process based on titanium dioxide with ultraviolet irradiation in an aqueous solution. Titanium dioxide was synthesized and characterized using X-ray diffraction and scanning electron microscopy. The average size of the synthesized crystals was 4.7 (± 0.2) nm. Design of experiments was done by a central composite design based on the response surface methodology and multiple linear regression was... 

    Municipal wastewater treatment and fouling in microalgal-activated sludge membrane bioreactor: Cultivation in raw and treated wastewater

    , Article Journal of Water Process Engineering ; Volume 49 , 2022 ; 22147144 (ISSN) Najafi Chaleshtori, S ; Shamskilani, M ; Babaei, A ; Behrang, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Since the advent of conventional activated sludge biological treatment plants, their low efficiency in nitrogen and phosphorus removal has become a significant concern. Therefore, in this study, the performance of microalgal-activated sludge membrane bioreactor (MAS-MBR) as a self-biological treatment or as a post-treatment for conventional biological treatments was investigated. A continuous MAS-MBR with two ratios of algae/sludge (only microalgae and 5:1) was used to treat raw and treated wastewater. The optimum case was achieved with the cultivation of mixed algae/sludge in raw wastewater (R2 case). In this case, the ammonium and phosphorus removal efficiencies were 94.36 ± 3.5 and 88.37... 

    Recent advances in aqueous virus removal technologies

    , Article Chemosphere ; Volume 305 , 2022 ; 00456535 (ISSN) Al-Hazmi, H. E ; Shokrani, H ; Shokrani, A ; Jabbour, K ; Abida, O ; Mousavi Khadem, S. S ; Habibzadeh, S ; Sonawane, S. H ; Saeb, M. R ; Bonilla-Petriciolet, A ; Badawi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The COVID-19 outbreak has triggered a massive research, but still urgent detection and treatment of this virus seems a public concern. The spread of viruses in aqueous environments underlined efficient virus treatment processes as a hot challenge. This review critically and comprehensively enables identifying and classifying advanced biochemical, membrane-based and disinfection processes for effective treatment of virus-contaminated water and wastewater. Understanding the functions of individual and combined/multi-stage processes in terms of manufacturing and economical parameters makes this contribution a different story from available review papers. Moreover, this review discusses... 

    Water treatment using stimuli-responsive polymers

    , Article Polymer Chemistry ; Volume 13, Issue 42 , 2022 , Pages 5940-5964 ; 17599954 (ISSN) Abousalman Rezvani, Z ; Roghani Mamaqani, H ; Riazi, H ; Abousalman Rezvani, O ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Water treatment is a process used to eliminate or reduce chemical and biological contaminants that are potentially harmful to the water supply for human use. Stimuli-responsive polymers are a new category of smart materials used in water treatment via a stimuli-induced purification process and subsequent regeneration of the polymers. Stimuli-responsive polymers dynamically change their physico-chemical properties upon environmental changes. They can undergo shrinkage or expansion, alter their optical properties, and change their electrical characteristics depending on the applied stimuli. In this context, various stimuli-responsive polymer systems such as self-assembled nanostructures,... 

    Development and verification of a flexible tethered satellite system model considering the fuel slosh

    , Article Multibody System Dynamics ; Volume 56, Issue 3 , 2022 , Pages 289-312 ; 13845640 (ISSN) Jafari Shahbazzadeh, Z ; Vatankhah, R ; Eghtesad, M ; Assadian, N ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Removing space debris of various sizes, configurations, and properties from Earth’s orbits is one of the main missions of world space agencies. The existence of deactivated bodies within the path of other spacecraft increases the risk of collision. Althgough towing a satellite through a tether and taking it out of orbit may be a definite solution for space debris removal, most deactivated satellites have some fuel remaining in their fuel tank. This remaining liquid slosh within the tank directly affects satellite motion. To improve the mathematical modeling, the existence of unburned fuel is considered. More specifically, this research focuses on dynamic modeling and control of a selected... 

    A sustainable approach to replace bleed stream in electrical refining of copper

    , Article Materials Letters: X ; Volume 16 , 2022 ; 25901508 (ISSN) Shojaei, M ; Khayati, G ; Korasani, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Despite extensive studies on electrorefining to remove impurities from copper production units, bleeding electrolytes is the most popular method for controlling impurities due to low operating costs. A controlled cooled-reheat cycle was used to remove impurities in industrial electrolytes of Khatoon Abad copper company. Phase identification and physical study were done by the XRD, SEM, TEM, and FTIR techniques. The results confirmed the possibility of the removal of 23 wt% Ni, 26 wt% Sb, 2.4 wt% As and convention of 6 wt% of As5+ to As3+ at cooled-reheat cycle. © 2022 The Author(s)  

    Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: A review

    , Article Journal of Environmental Management ; Volume 313 , 2022 ; 03014797 (ISSN) Tavakoli, A ; Rahimi, K ; Saghandali, F ; Scott, J ; Lovell, E ; Sharif University of Technology
    Academic Press  2022
    Abstract
    In recent years, the importance of capturing CO2 has increased due to the necessity of minimizing climate change and the detrimental effects of CO2 emissions from industrial processes. CO2 absorption, as one of the most mature carbon capture technologies, has been improved by introducing nanosized particles into liquid absorbents. Nanofluids have been the subject of interest in many studies recently due to their tremendous impact on absorption. This review comprehensively examines the CO2 absorption behavior for nanofluids through the investigation of different absorption systems. Potential mechanisms for improving the absorption/regeneration performance of nanoabsorbents as well as the... 

    Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials

    , Article Journal of Chemical Technology and Biotechnology ; Volume 97, Issue 7 , 2022 , Pages 1640-1654 ; 02682575 (ISSN) Rabiee, N ; Ahmadi, S ; Soufi, G. J ; Hekmatnia, A ; Khatami, M ; Fatahi, Y ; Iravani, S ; Varma, R. S ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity,... 

    Zwitterion-functionalized MIL-125-NH2-based thin-film nanocomposite forward osmosis membranes: towards improved performance for salt rejection and heavy metal removal

    , Article New Journal of Chemistry ; Volume 46, Issue 31 , 2022 , Pages 15205-15218 ; 11440546 (ISSN) Bayrami, A ; Bagherzadeh, M ; Navi, H ; Nikkhoo, M ; Amini, M ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    In the current study, thin-film nanocomposite membranes (TFN-Mx) based on a zwitterion-functionalized metal-organic framework (MOF) have been developed for the forward osmosis (FO) salt-water separation process. The active polyamide layer was formed through the interfacial polymerization of the m-phenylenediamine aqueous phase (with or without the presence of MIL-125-NH-CC-Cys) and the trimesoyl chloride organic phase. In comparison with the results from the surface of the unmodified membrane, a nanofiller-incorporated TFN-M0.10 membrane represents a smoother and more wettable surface that collaborates synergically to enhance the membrane antifouling ability. Among the examined membranes,... 

    Efficient removal of heavy metal ions from aqueous media by unmodified and modified nanodiamonds

    , Article Journal of Environmental Management ; Volume 316 , 2022 ; 03014797 (ISSN) Ahmadijokani, F ; Molavi, H ; Peyghambari, A ; Shojaei, A ; Rezakazemi, M ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Academic Press  2022
    Abstract
    This article deals with the adsorption performances of the unmodified nanodiamond (ND) and thermally oxidized nanodiamond (Ox-ND) for the removal of different heavy metal ions such as Fe (III), Cu (II), Cr (VI), and Cd (II) from wastewater. The adsorption capacities of the ions onto adsorbents are higher and follow the order: Ox-ND-3 > Ox-ND-1.5 > ND, which is consistent with their surface areas, zeta potentials, and the presence of carboxyl groups, suggesting that electrostatic attractions between the positive metal ions and the negatively charged adsorbents are the predominant adsorption mechanisms. Adsorption capacities of these adsorbents were found to be 26.8, 31.3, and 45.7 mg/g for Fe... 

    EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms

    , Article Frontiers in Physiology ; Volume 13 , 2022 ; 1664042X (ISSN) Zangeneh Soroush, M ; Tahvilian, P ; Nasirpour, M. H ; Maghooli, K ; Sadeghniiat Haghighi, K ; Vahid Harandi, S ; Abdollahi, Z ; Ghazizadeh, A ; Jafarnia Dabanloo, N ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    Blind source separation (BSS) methods have received a great deal of attention in electroencephalogram (EEG) artifact elimination as they are routine and standard signal processing tools to remove artifacts and reserve desired neural information. On the other hand, a classifier should follow BSS methods to automatically identify artifactual sources and remove them in the following steps. In addition, removing all detected artifactual components leads to loss of information since some desired information related to neural activity leaks to these sources. So, an approach should be employed to detect and suppress the artifacts and reserve neural activity. This study introduces a novel method... 

    ZIF-8/Chitosan hybrid nanoparticles with tunable morphologies as superior adsorbents towards both anionic and cationic dyes for a broad range of acidic and basic environments

    , Article Microporous and Mesoporous Materials ; Volume 343 , 2022 ; 13871811 (ISSN) Amin, P ; Shojaei, A ; Hamzehlouyan, T ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A series of nanohybrids using ZIF-8 in the presence of chitosan (CS) at various compositions (0.5–15 wt%) were synthesized. Thorough characterization exhibited that the morphology of the nanoparticles in terms of surface charge, particle size, specific surface area, and pore volume is significantly dominated by the CS content in the hybrid nanoparticles. Amongst the nanoparticles synthesized, a hybrid nanoparticle containing 2 wt% CS, named CS-ZIF-2, represented the largest positive zeta potential and smallest particle size. Moreover, adsorption experiments indicated that CS-ZIF-2 had considerable adsorption capacity against anionic dye (Congo Red, CR) compared with the individual ZIF-8 and... 

    Recent advances on dual-functional photocatalytic systems for combined removal of hazardous water pollutants and energy generation

    , Article Research on Chemical Intermediates ; Volume 48, Issue 3 , 2022 , Pages 911-933 ; 09226168 (ISSN) Naseri, A ; Asghari Sarabi, G ; Samadi, M ; Yousefi, M ; Ebrahimi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Photocatalytic wastewater treatment and concurrent energy production or metal ions conversion to less harmful products have great potential to address both environmental and energy challenging issues, two of the most significant problems facing humankind. Many efforts have been devoted for achieving enhanced photocatalytic activity as well as optimizing reaction conditions and materials design. In this context, various strategies were applied to develop efficient dual-functional photocatalysts for environmental purification and simultaneous energy production. Concurrent photocatalytic degradation of organic pollutants and Cr(VI) reduction to less toxic Cr(III) improved the rate of both... 

    COD and ammonia removal from landfill leachate by UV/PMS/Fe2+ process: ANN/RSM modeling and optimization

    , Article Process Safety and Environmental Protection ; Volume 159 , 2022 , Pages 716-726 ; 09575820 (ISSN) Masouleh, S.Y ; Mozaffarian, M ; Dabir, B ; Ramezani, S. F ; Sharif University of Technology
    Institution of Chemical Engineers  2022
    Abstract
    Landfill leachate is a highly contaminated liquid generated in municipal solid waste landfills. The application of sulfate radical-based advanced oxidation processes (SR-AOP) in landfill leachate treatments is emerging due to their ability to degrade both organic refractory matters and ammonia nitrogen. In this paper, application of peroxymonosulfate (PMS), activated by Fe2+ and UV was used as an economical and environmentally friendly approach for treatment of landfill leachate. Chemical oxygen demand (COD) and ammonia removals were measured as the two primary responses of landfill leachate to UV/PMS/Fe2+ treatment system. The main parameters (pH, PMS/Fe2+ mass ratio, Fe2+ dosage) affecting... 

    Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes

    , Article Science of the Total Environment ; Volume 810 , 2022 ; 00489697 (ISSN) Vatanpour, V ; Jouyandeh, M ; Mousavi Khadem, S. S ; Paziresh, S ; Dehghan, A ; Ganjali, M. R ; Moradi, H ; Mirsadeghi, S ; Badiei, A ; Munir, M. T ; Mohaddespour, A ; Rabiee, N ; Habibzadeh, S ; Mashhadzadeh, A. H ; Nouranian, S ; Formela, K ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    We introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Moreover, microstructure and... 

    Impulsive noise removal via a blind CNN enhanced by an iterative post-processing

    , Article Signal Processing ; Volume 192 , 2022 ; 01651684 (ISSN) Sadrizadeh, S ; Otroshi Shahreza, H ; Marvasti, F ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In digital imaging, especially in the process of data acquisition and transmission, images are often affected by impulsive noise. Therefore, it is essential to remove impulsive noise from images before any further processing. Due to the remarkable performance of deep neural networks in different applications of image processing and computer vision, we present an end-to-end fully convolutional neural network to remove impulsive noise from images. To train our network, we generate a customized dataset with various noise densities in which the highly corrupted images are more frequent. Hence, our convolutional neural network is blind since the percentage of impulsive noise is not required as... 

    Optimization of selenization process to remove Ga-induced pin-holes in CIGS thin films

    , Article Solar Energy ; Volume 236 , 2022 , Pages 175-181 ; 0038092X (ISSN) Khosroshahi, R ; Dehghani, M ; Tehrani, N. A ; Taghavinia, N ; Bagherzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In thin-film solar cells, deposition of pinhole and the crack-free absorber layer, with the right chemical stoichiometry is highly important for high-performance solar cell devices. In solution-based CIGS solar cell technology, a nanoparticle ink approach provides phase stability of the final chalcogenide absorber layer. However, the sintering of small nanoparticles to form large grains with reduced grain boundaries is an important challenge in the fabrication process. This is usually realized by annealing in the Se atmosphere, i.e. selenization process. However, the presence of Ga in CIGS films leads to pinholes after selenization. In this study, the synthesis and deposition of high-quality... 

    Simultaneous removal of mercury ions and cationic and anionic dyes from aqueous solution using epichlorohydrin cross-linked chitosan @ magnetic Fe3O4/activated carbon nanocomposite as an adsorbent

    , Article Diamond and Related Materials ; Volume 124 , 2022 ; 09259635 (ISSN) Kaveh, R ; Bagherzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    An economical epichlorohydrin cross-linked chitosan @ magnetic Fe3O4/activated carbon nanocomposite, CH-EP@Fe3O4/AC, was successfully synthesized and used as a suitable adsorbent material for removal of a triphenylmethane cationic dye, Malachite green (MG), an anionic dye, Reactive red 120 (RR120), and Mercury ions (Hg2+) from aqueous solution. The prepared adsorbent has been characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy, Thermogravimetric analysis, Brunauer–Emmett–Teller analysis as well as Vibrating sample magnetometer. According to the result of Brunauer–Emmett–Teller isotherm, the prepared adsorbent has a specific surface area... 

    UiO-66 metal–organic frameworks in water treatment: A critical review

    , Article Progress in Materials Science ; Volume 125 , 2022 ; 00796425 (ISSN) Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Tajahmadi, S ; Bahi, A ; Ko, F ; Aminabhavi, T. M ; Li, J. R ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal-organic frameworks (MOFs) have recently achieved much attention to eliminating toxic pollutants because of their attractive attributes, including large specific surface area, ultra-high porosity, abundant active adsorption sites, tunable surface chemistry, well-controlled pore size distribution, and strong host–guest interactions. Among the many developed MOFs, the Zr-based MOFs, particularly the UiO-66 family, are considered extremely attractive for wastewater treatment applications. The fascinating properties of UiO-66 such as high thermal stability, superior chemical resistance towards several solvents, including benzene, acetone, different alcohols, dimethylformamide, acidic and...