Loading...
Search for: physical-parameters
0.008 seconds
Total 52 records

    Design for Fabrication and Physical Parameter Optimization of Mems Parametric Exitation Gyrsocope

    , M.Sc. Thesis Sharif University of Technology Gholamzadeh, Reza (Author) ; Salarie, Hassan (Supervisor)
    Abstract
    Recently, parametric excitation has been proposed and experimentally proven to provide micro gyroscopes with robustness to parameter variations and enhancement of sensitivity. harmonic excitation gyroscopes are very sensitive to response of a resonance at the resonant frequency; therefore it has to be created accurately. However, parametric excitation gyroscopes are not sensitive as a result of wide bound of frequency at drive mode, accordingly it is not necessary to be formed accurately in the same way as harmonic excitation gyroscope.
    The produced stress at combs have a significance effect on robustness, sensitivity and calibration curves of parametric excitation gyroscope, as a... 

    BRST quantization of noncommutative gauge theories

    , Article Physical Review D - Particles, Fields, Gravitation and Cosmology ; Volume 67, Issue 10 , 2003 ; 15507998 (ISSN) Soroush, M ; Sharif University of Technology
    2003
    Abstract
    In this paper, the Becchi-Rouet-Stora-Tyutin (BRST) symmetry transformation is presented for the noncommutative [Formula Presented] gauge theory. The nilpotency of the charge associated with this symmetry is then proved. As a consequence of the spacelike noncommutativity parameter, the Hilbert space of physical states is determined by the cohomology space of the BRST operator as in the commutative case. Further, the unitarity of the S-matrix elements projected onto the subspace of the physical states is deduced. © 2003 The American Physical Society  

    A novel approach for compensating the significance of tubule's architecture in urine concentrating mechanism of renal medulla

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3 B , 2013 ; 9780791856222 (ISBN) Sohrabi, S ; Mehr, S. M. N ; Falsafi, P ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Many theories and mathematical simulations have been proposed concerning urine concentrating mechanism (UCM). The WKM and region approach are the two most valuable methods for compensating the effect of tubule's architecture in renal medulla. They both have tried to simulate tubule's confinement within a particular region mathematically in one spatial dimension. In this study, continuity, momentum and species transport equations along with standard expressions for transtubular solutes and water transports on tubule's membrane were solved numerically in three spatial dimensions which practically is the main significance of our novel approach. Model structure has been chosen as simple as... 

    Electrically rotating suspended films of polar liquids

    , Article Experiments in Fluids ; Volume 50, Issue 2 , August , 2011 , Pages 419-428 ; 07234864 (ISSN) Shirsavar, R ; Amjadi, A ; Tonddast Navaei, A ; Ejtehadi, M. R ; Sharif University of Technology
    Abstract
    Controlled rotation of a suspended soap water film, simply generated by applying an electric field, has been reported recently. The film rotates when the applied electric field exceeds a certain threshold. In this study, we investigate the phenomenon in films made of a number of other liquids with various physical and chemical properties. Our measurements show that the intrinsic electrical dipole moments of the liquid molecules seems to be vital for the corresponding film rotation. All the investigated rotating liquids have a molecular electric dipole moment of above 1 Debye, while weakly polar liquids do not rotate. However, the liquids investigated here cover a wide range of physical... 

    Moon shadow on high energy cosmic ray in data of a small extensive air shower array

    , Article Astroparticle Physics ; Volume 33, Issue 5-6 , 2010 , Pages 330-334 ; 09276505 (ISSN) Sheidaei, F ; Bahmanabadi, M ; Samimi, J ; Sharif University of Technology
    2010
    Abstract
    Data from a small air shower array were used to examine the cosmic ray shadow of the Moon at energies more than 100 TeV. A simple technique has been used for the analysis of this data. In this technique the number of EAS events with arrival directions falling in error circles centered about the moving moon is compared to the mean number of events falling in error circles with centers randomly chosen in the sky. For any assumed angular radius of the error circle the deficit in EAS event count in the direction of moon which is a moon-related effect is interpreted as the shadow of the moon. A simple theoretical model has been developed to relate the mean number of EAS events, Nsky, to the... 

    Fluid–structure interaction simulation of a cerebral aneurysm: effects of endovascular coiling treatment and aneurysm wall thickening

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 74 , 2017 , Pages 72-83 ; 17516161 (ISSN) Shamloo, A ; Nejad, M. A ; Saeedi, M ; Sharif University of Technology
    Abstract
    In the present study, we investigate the effect of the hemodynamic factors of the blood flow on the cerebral aneurysms. To this end, a hypothetical geometry of the aneurysm in the circle of Willis, located in the bifurcation point of the anterior cerebral artery (ACA) and anterior communicating artery (ACoA) is modeled in a three-dimensional manner. Three cases are chosen in the current study: an untreated thin wall (first case), untreated thick wall (second case), and a treated aneurysm (third case). The effect of increasing the aneurysm wall thickness on the deformation and stress distribution of the walls are studied. The obtained results showed that in the second case, a reduction in the... 

    Detemining the thickness of barriers and well of Resonance Tunneling Diodes by specified I-V characteristic

    , Article Applied Mechanics and Materials ; Volume 110-116 , 2012 , Pages 5464-5470 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Shahhoseini, A ; Ghorbanalipour, S ; Faez, R ; Sharif University of Technology
    Abstract
    In this paper, a method of determining physical dimension of Double Barrier Quantum Well (DBQW) of Resonance Tunneling Diodes (RTDs) is presented by using I-V characteristic governing on them. In this procedure, first we have used performance metrics related to RTDs I-V characteristic such as Peak to Valley Current Ratio (PVCR), peak current density (JP), valley current density (JV) and Voltage Swing (VS), and by some other arbitrary points, we have fitted a curve to the RTD current-voltage equation by MATLAB software. Then we have obtained the physical parameter of I-V equation and adjusted some of them with modification coefficients. Next, by choosing the material of barriers and the well... 

    Evaluating the effects of Sasobit on characterization and workability of asphalt mixes containing reclaimed asphalt binders

    , Article Asphalt Pavements - Proceedings of the International Conference on Asphalt Pavements, ISAP 2014 ; Vol. 2, issue , 2014 , p. 1241-1252 Safazadeh, F ; Vahabi, A ; Sharif University of Technology
    Abstract
    Use of Reclaimed Asphalt Pavement in HMA1 is beneficial by reduction of initial costs. But the higher stiffness of aged binder may lead to workability issues in the field, therefore use of large percentages of RAP2 impacts the HMA properties. Utilizing Sasobit is a solution to use more RAP at a relatively lower temperature in HMA mixes. This study investigates the effects of 2 percent Sasobit on the reduction of compaction temperature by measuring low shear viscosity and workability of mixtures containing RAP binder. Low and intermediate temperature properties of RAP binder using mix designs were compared to properties of artificially aged binders. Virgin binder was aged in PAV to make... 

    Evaluation of the effects of process parameters on granule mean size in a conical high shear granulator using response surface methodology

    , Article Powder Technology ; Volume 237 , 2013 , Pages 186-190 ; 00325910 (ISSN) Ranjbarian, S ; Farhadi, F ; Sharif University of Technology
    2013
    Abstract
    Response surface methodology was used to investigate the effects of operating parameters such as impeller speed, binder mass and granulation time on the average size of granules produced in a lab scale conical high shear granulator. Two quadratic models were proposed to express granule mean size as a function of impeller speed and binder mass as well as impeller speed and granulation time. It was found out that in the studied domain, the influence of each parameter on granule size differs from one another. While increasing binder mass at constant quantity of powder increased the average size linearly, increasing impeller speed changed the mean size in accordance with quadratic trend. The... 

    Estimation of effective brain connectivity with dual kalman filter and EEG source localization methods

    , Article Australasian Physical and Engineering Sciences in Medicine ; Volume 40, Issue 3 , 2017 , Pages 675-686 ; 01589938 (ISSN) Rajabioun, M ; Motie Nasrabadi, A ; Shamsollahi, M. B ; Sharif University of Technology
    Abstract
    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective... 

    Postural control learning dynamics in Parkinson's disease: Early improvement with plateau in stability, and continuous progression in flexibility and mobility

    , Article BioMedical Engineering Online ; Volume 19, Issue 1 , 2020 Rahmati, Z ; Behzadipour, S ; Schouten, A. C ; Taghizadeh, G ; Firoozbakhsh, K ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Balance training improves postural control in Parkinson's disease (PD). However, a systematic approach for the development of individualized, optimal training programs is still lacking, as the learning dynamics of the postural control in PD, over a training program, are poorly understood. Objectives: We investigated the learning dynamics of the postural control in PD, during a balance-training program, in terms of the clinical, posturographic, and novel model-based measures. Methods: Twenty patients with PD participated in a balance-training program, 3 days a week, for 6 weeks. Clinical tests assessed functional balance and mobility pre-training, mid-training, and post-training.... 

    Influence of the tip mass on the tip-sample interactions in TM-AFM

    , Article Ultramicroscopy ; Volume 111, Issue 8 , Jul , 2011 , Pages 1423-1436 ; 03043991 (ISSN) Pishkenari, H. N ; Meghdari, A ; Sharif University of Technology
    2011
    Abstract
    This paper focuses on the influences of the tip mass ratio (the ratio of the tip mass to the cantilever mass), on the excitation of higher oscillation eigenmodes and also on the tip-sample interaction forces in tapping mode atomic force microscopy (TM-AFM). A precise model for the cantilever dynamics capable of accurate simulations is essential for the investigation of the tip mass effects on the interaction forces. In the present work, the finite element method (FEM) is used for modeling the AFM cantilever to consider the oscillations of higher eigenmodes oscillations. In addition, molecular dynamics (MD) is used to calculate precise data for the tip-sample force as a function of tip... 

    Comprehensive two-dimensional gas chromatography (GC×GC) retention time shift correction and modeling using bilinear peak alignment, correlation optimized shifting and multivariate curve resolution

    , Article Chemometrics and Intelligent Laboratory Systems ; Volume 117 , 2012 , Pages 80-91 ; 01697439 (ISSN) Parastar, H ; Jalali Heravi, M ; Tauler, R ; Sharif University of Technology
    Elsevier  2012
    Abstract
    A combination of peak alignment methods and multivariate curve resolution (MCR) is proposed for handling retention time shifts and modeling of comprehensive two-dimensional gas chromatographic (GC × GC) data in the case of univariate detection systems such as in flame ionization detection (FID) or in total ion current mass spectrometry (TIC-MS) detection. A new bilinear peak alignment (BPA) method, based on MCR, is first proposed to correct for progressive within run retention time shifts in GC × GC due to temperature programming effects on second chromatographic dimension. The performance of the proposed peak alignment method is compared to that of the correlation optimized warping (COW)... 

    Modeling vibrational behavior of silicon nanowires using accelerated molecular dynamics simulations

    , Article Scientia Iranica ; Volume 27, Issue 2 , 2021 , Pages 819-827 ; 10263098 (ISSN) Nejat Pishkenari, H ; Delafrouz, P ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    The classical methods utilized for modeling nano-scale systems are not practical because of the enlarged surface e ects that appear at small dimensions. Contrarily, implementing more accurate methods is followed by prolonged computations as these methods are highly dependent on quantum and atomistic models, and they can be employed for very small sizes in brief time periods. In order to speed up the Molecular Dynamics (MD) simulations of the silicon structures, Coarse-Graining (CG) models are put forward in this research. The procedure involves establishing a map between the main structure's atoms and the beads comprising the CG model and modifying the parameters of the system so that the... 

    Parameter identification of a parametrically excited rate micro-gyroscope using recursive least squares method

    , Article Scientia Iranica ; Volume 24, Issue 4 , 2017 , Pages 1889-1900 ; 10263098 (ISSN) Mohammadi, Z ; Salarieh, H ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Estimation of physical parameters of a parametrically excited gyroscope is studied in this paper. This estimation is possible by reading the input and output data of the gyroscope. Because of different faults in the manufacturing process and tolerances, physical parameters of a gyroscope are not exactly same as the expected values of the manufacturer. Moreover, changing of temperature, humidity, external acceleration, etc. can change the physical parameters of the gyro. Thus, the physical parameters of gyroscope are not fixed values and may deviate from the desired designed values. The physical parameters of gyroscope determine the optimal region for working of gyroscope. Thus, if the... 

    New modeling for moment-rotation behavior of bolted endplate connections

    , Article Scientia Iranica ; Volume 18, Issue 4 A , August , 2011 , Pages 827-834 ; 10263098 (ISSN) Mohamadi Shoore, M. R ; Mofid, M ; Sharif University of Technology
    2011
    Abstract
    A new exponential model to depict the moment-rotation (M-θ) relationship of Bolted Endplate Connections (BEC) is proposed. The proposed model represents an approach to the prediction of M-O curves, taking into account the possible failure modes and the deformation characteristics of the connection elements. The presented model has three physical parameters, along with two curve-fitted factors. These physical parameters are generated from dimensional details of the connection, as well as the material properties. By employing simplified connection behavioral models to estimate the connection M-θ behavior, analytical expressions for evaluating major connection parameters, such as initial... 

    Design and synthesis of AKAM: A RISC asynchronous microprocessor

    , Article 2007 International Conference on Intelligent and Advanced Systems, ICIAS 2007, Kuala Lumpur, 25 November 2007 through 28 November 2007 ; 2007 , Pages 1318-1323 ; 1424413559 (ISBN); 9781424413553 (ISBN) Mirza Aghatabar, M ; Rasooli, A ; Jafarpour, B ; Sharif University of Technology
    2007
    Abstract
    Asynchronous microprocessors are more flexible to adapt to physical parameters, and have lower power consumption than synchronous microprocessors. In this paper we will introduce the design of an asynchronous microprocessor (V8-uRISC) and explore its design process compared to synchronous design. The processor is synthesized by Persia, an automatic tool for synthesizing asynchronous circuits. We have performed full functional test at various levels of design and synthesis. Our results show that an area overhead is expected for the asynchronous design as the cost for lower power and more robustness. ©2007 IEEE  

    Role of carrier characteristics affecting microbial density and population in enhanced nitrogen and phosphorus removal from wastewater

    , Article Journal of Environmental Management ; Volume 302 , 2022 ; 03014797 (ISSN) Massoompour, A.R ; Raie, M ; Borghei, S. M ; Dewil, R ; Appels, L ; Sharif University of Technology
    Academic Press  2022
    Abstract
    This research aims to improve simultaneous nitrification-denitrification and phosphorus removal (SNDPR) using novel carriers and to demonstrate the effect of carrier characteristics on nutrient removal in a biofilm reactor. For this purpose, biofilms enriched with both polyphosphate-accumulating organisms (PAOs) and nitrifiers were cultivated in two parallel sequencing batch reactors containing conventional moving bed bioreactor carriers (MBBR) and a novel type of carriers (carbon-based moving carriers (CBMC)). The new carriers were produced based on recycled waste materials via a chemical-thermal process and their specific surface area were 10.4 times higher than typical MBBR carriers of... 

    Physical properties of the WASP-67 planetary system from multi-colour photometry

    , Article Astronomy and Astrophysics ; Vol. 568 , August , 2014 ; ISSN: 00046361 Mancini, L ; Southworth, J ; Ciceri, S ; Calchi Novati, S ; Dominik, M ; Henning, Th ; Jorgensen, U. G ; Korhonen, H ; Nikolov, N ; Alsubai, K. A ; Bozza, V ; Bramich, D. M ; D'Ago, G ; Figuera Jaimes, R ; Galianni, P ; Gu, S. H ; Harpsoe, K ; Hinse, T. C ; Hundertmark, M ; Juncher, D ; Kains, N ; Popovas, A ; Rabus, M ; Rahvar, S ; Skottfelt, J ; Snodgrass, C ; Street, R ; Surdej, J ; Tsapras, Y ; Vilela, C ; Wang, X. B ; Wertz, O ; Sharif University of Technology
    Abstract
    Context. The extrasolar planet WASP-67 b is the first hot Jupiter definitively known to undergo only partial eclipses. The lack of the second and third contact points in this planetary system makes it difficult to obtain accurate measurements of its physical parameters  

    Best vortex tube cascade for highest thermal separation

    , Article International Journal of Refrigeration ; Volume 85 , 2018 , Pages 282-291 ; 01407007 (ISSN) Majidi, D ; Alighardashi, H ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The current study examines different arrangements of vortex tubes (VTs) to get higher performances for cooling and heating. The effects of thermo-physical parameters such as inlet feed temperature and inlet/outlet vortex tube pressure on generated temperature gradient are investigated. To estimate the cold outlet temperatures, the available equations in the literature are verified against our experimental data. Moreover, we propose a new equation to estimate the hot outlet temperature based on the upper limit of hot temperature (ULHT) and the lower limit of cold temperature (LLCT), verified with experimental data as well. Further, several arrangements are simulated to obtain the minimum cold...